Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(5x)<= sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(5x)≤2​

Solution

−4π​+52π​n≤x≤20π​+52π​n
+2
Interval Notation
[−4π​+52π​n,20π​+52π​n]
Decimal
−0.78539…+52π​n≤x≤0.15707…+52π​n
Solution steps
2sin(5x)≤2​
Divide both sides by 2
2sin(5x)≤2​
Divide both sides by 222sin(5x)​≤22​​
Simplifysin(5x)≤22​​
sin(5x)≤22​​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(22​​)+2πn≤5x≤arcsin(22​​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(22​​)+2πn≤5xand5x≤arcsin(22​​)+2πn
−π−arcsin(22​​)+2πn≤5x:x≥−4π​+52π​n
−π−arcsin(22​​)+2πn≤5x
Switch sides5x≥−π−arcsin(22​​)+2πn
Simplify −π−arcsin(22​​)+2πn:−π−4π​+2πn
−π−arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−4π​+2πn
5x≥−π−4π​+2πn
Divide both sides by 5
5x≥−π−4π​+2πn
Divide both sides by 555x​≥−5π​−54π​​+52πn​
Simplify
55x​≥−5π​−54π​​+52πn​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify −5π​−54π​​+52πn​:−5π​−20π​+52πn​
−5π​−54π​​+52πn​
54π​​=20π​
54π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅5π​
Multiply the numbers: 4⋅5=20=20π​
=−5π​−20π​+52πn​
x≥−5π​−20π​+52πn​
x≥−5π​−20π​+52πn​
Simplify −5π​−20π​:−4π​
−5π​−20π​
Least Common Multiplier of 5,20:20
5,20
Least Common Multiplier (LCM)
Prime factorization of 5:5
5
5 is a prime number, therefore no factorization is possible=5
Prime factorization of 20:2⋅2⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
Multiply each factor the greatest number of times it occurs in either 5 or 20=5⋅2⋅2
Multiply the numbers: 5⋅2⋅2=20=20
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 20
For 5π​:multiply the denominator and numerator by 45π​=5⋅4π4​=20π4​
=−20π4​−20π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=20−π4−π​
Add similar elements: −4π−π=−5π=20−5π​
Apply the fraction rule: b−a​=−ba​=−205π​
Cancel the common factor: 5=−4π​
x≥−4π​+52π​n
x≥−4π​+52π​n
5x≤arcsin(22​​)+2πn:x≤20π​+52πn​
5x≤arcsin(22​​)+2πn
Simplify arcsin(22​​)+2πn:4π​+2πn
arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​+2πn
5x≤4π​+2πn
Divide both sides by 5
5x≤4π​+2πn
Divide both sides by 555x​≤54π​​+52πn​
Simplify
55x​≤54π​​+52πn​
Simplify 55x​:x
55x​
Divide the numbers: 55​=1=x
Simplify 54π​​+52πn​:20π​+52πn​
54π​​+52πn​
54π​​=20π​
54π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅5π​
Multiply the numbers: 4⋅5=20=20π​
=20π​+52πn​
x≤20π​+52πn​
x≤20π​+52πn​
x≤20π​+52πn​
Combine the intervalsx≥−4π​+52π​nandx≤20π​+52πn​
Merge Overlapping Intervals−4π​+52π​n≤x≤20π​+52π​n

Popular Examples

(2cos(x)-sqrt(3))>02sin^2(x/4)<1.5cos^2(x)< 3/42cos(x)<= 1,-pi<= x<pi90-arctan((3L)/4)>= 40
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024