Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-cot(x))(csc(x-pi/3)-2)<0,-pi<,x<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(1−cot(x))(csc(x−3π​)−2)<0,−π<,x<0

Solution

4π​+2πn<x<3π​+2πnor2π​+2πn<x<π+2πnor67π​+2πn<x<45π​+2πnor34π​+2πn<x<2π+2πn
+2
Interval Notation
(4π​+2πn,3π​+2πn)∪(2π​+2πn,π+2πn)∪(67π​+2πn,45π​+2πn)∪(34π​+2πn,2π+2πn)
Decimal
0.78539…+2πn<x<1.04719…+2πnor1.57079…+2πn<x<3.14159…+2πnor3.66519…+2πn<x<3.92699…+2πnor4.18879…+2πn<x<6.28318…+2πn
Solution steps
(1−cot(x))(csc(x−3π​)−2)<0
Periodicity of (1−cot(x))(csc(x−3π​)−2):2π
(1−cot(x))(csc(x−3π​)−2)is composed of the following functions and periods:cot(x)with periodicity of π
The compound periodicity is:=2π
Express with sin, cos
(1−cot(x))(csc(x−3π​)−2)<0
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​(1−sin(x)cos(x)​)(csc(x−3π​)−2)<0
Use the basic trigonometric identity: csc(x)=sin(x)1​(1−sin(x)cos(x)​)(sin(x−3π​)1​−2)<0
(1−sin(x)cos(x)​)(sin(x−3π​)1​−2)<0
Simplify (1−sin(x)cos(x)​)(sin(x−3π​)1​−2):sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​
(1−sin(x)cos(x)​)(sin(x−3π​)1​−2)
Join 1−sin(x)cos(x)​:sin(x)sin(x)−cos(x)​
1−sin(x)cos(x)​
Convert element to fraction: 1=sin(x)1sin(x)​=sin(x)1⋅sin(x)​−sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)1⋅sin(x)−cos(x)​
Multiply: 1⋅sin(x)=sin(x)=sin(x)sin(x)−cos(x)​
=sin(x)sin(x)−cos(x)​(sin(x−3π​)1​−2)
Join x−3π​:33x−π​
x−3π​
Convert element to fraction: x=3x3​=3x⋅3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3x⋅3−π​
=sin(x)sin(x)−cos(x)​(sin(33x−π​)1​−2)
Multiply fractions: a⋅cb​=ca⋅b​=sin(x)(sin(x)−cos(x))(sin(3x⋅3−π​)1​−2)​
Join sin(3x⋅3−π​)1​−2:sin(3x⋅3−π​)1−2sin(33x−π​)​
sin(3x⋅3−π​)1​−2
Convert element to fraction: 2=sin(3x3−π​)2sin(3x3−π​)​=sin(3x⋅3−π​)1​−sin(3x⋅3−π​)2sin(3x⋅3−π​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(3x⋅3−π​)1−2sin(3x⋅3−π​)​
=sin(x)sin(33x−π​)−2sin(33x−π​)+1​(sin(x)−cos(x))​
Multiply (sin(x)−cos(x))sin(3x⋅3−π​)1−2sin(3x⋅3−π​)​:sin(3x⋅3−π​)(−2sin(33x−π​)+1)(sin(x)−cos(x))​
(sin(x)−cos(x))sin(3x⋅3−π​)1−2sin(3x⋅3−π​)​
Multiply fractions: a⋅cb​=ca⋅b​=sin(3x⋅3−π​)(1−2sin(3x⋅3−π​))(sin(x)−cos(x))​
=sin(x)sin(3x⋅3−π​)(−2sin(33x−π​)+1)(sin(x)−cos(x))​​
Apply the fraction rule: acb​​=c⋅ab​=sin(3x⋅3−π​)sin(x)(1−2sin(3x⋅3−π​))(sin(x)−cos(x))​
sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​<0
Find the zeroes and undifined points of sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​for 0≤x<2π
To find the zeroes, set the inequality to zerosin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​=0
sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​=0,0≤x<2π:x=2π​,x=67π​,x=4π​,x=45π​
sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0(1−2sin(33x−π​))(sin(x)−cos(x))=0
Solving each part separately1−2sin(33x−π​)=0orsin(x)−cos(x)=0
1−2sin(33x−π​)=0,0≤x<2π:x=2π​,x=67π​
1−2sin(33x−π​)=0,0≤x<2π
Move 1to the right side
1−2sin(33x−π​)=0
Subtract 1 from both sides1−2sin(33x−π​)−1=0−1
Simplify−2sin(33x−π​)=−1
−2sin(33x−π​)=−1
Divide both sides by −2
−2sin(33x−π​)=−1
Divide both sides by −2−2−2sin(33x−π​)​=−2−1​
Simplifysin(33x−π​)=21​
sin(33x−π​)=21​
General solutions for sin(33x−π​)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
33x−π​=6π​+2πn,33x−π​=65π​+2πn
33x−π​=6π​+2πn,33x−π​=65π​+2πn
Solve 33x−π​=6π​+2πn:x=2πn+3π​+6π​
33x−π​=6π​+2πn
Multiply both sides by 3
33x−π​=6π​+2πn
Multiply both sides by 333(3x−π)​=3⋅6π​+3⋅2πn
Simplify
33(3x−π)​=3⋅6π​+3⋅2πn
Simplify 33(3x−π)​:3x−π
33(3x−π)​
Divide the numbers: 33​=1=3x−π
Simplify 3⋅6π​+3⋅2πn:2π​+6πn
3⋅6π​+3⋅2πn
3⋅6π​=2π​
3⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π3​
Cancel the common factor: 3=2π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=2π​+6πn
3x−π=2π​+6πn
3x−π=2π​+6πn
3x−π=2π​+6πn
Move πto the right side
3x−π=2π​+6πn
Add π to both sides3x−π+π=2π​+6πn+π
Simplify3x=2π​+6πn+π
3x=2π​+6πn+π
Divide both sides by 3
3x=2π​+6πn+π
Divide both sides by 333x​=32π​​+36πn​+3π​
Simplify
33x​=32π​​+36πn​+3π​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​​+36πn​+3π​:2πn+3π​+6π​
32π​​+36πn​+3π​
Group like terms=3π​+36πn​+32π​​
36πn​=2πn
36πn​
Divide the numbers: 36​=2=2πn
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=3π​+2πn+6π​
Group like terms=2πn+3π​+6π​
x=2πn+3π​+6π​
x=2πn+3π​+6π​
x=2πn+3π​+6π​
Solve 33x−π​=65π​+2πn:x=2πn+3π​+65π​
33x−π​=65π​+2πn
Multiply both sides by 3
33x−π​=65π​+2πn
Multiply both sides by 333(3x−π)​=3⋅65π​+3⋅2πn
Simplify
33(3x−π)​=3⋅65π​+3⋅2πn
Simplify 33(3x−π)​:3x−π
33(3x−π)​
Divide the numbers: 33​=1=3x−π
Simplify 3⋅65π​+3⋅2πn:25π​+6πn
3⋅65π​+3⋅2πn
3⋅65π​=25π​
3⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π3​
Multiply the numbers: 5⋅3=15=615π​
Cancel the common factor: 3=25π​
3⋅2πn=6πn
3⋅2πn
Multiply the numbers: 3⋅2=6=6πn
=25π​+6πn
3x−π=25π​+6πn
3x−π=25π​+6πn
3x−π=25π​+6πn
Move πto the right side
3x−π=25π​+6πn
Add π to both sides3x−π+π=25π​+6πn+π
Simplify3x=25π​+6πn+π
3x=25π​+6πn+π
Divide both sides by 3
3x=25π​+6πn+π
Divide both sides by 333x​=325π​​+36πn​+3π​
Simplify
33x​=325π​​+36πn​+3π​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 325π​​+36πn​+3π​:2πn+3π​+65π​
325π​​+36πn​+3π​
Group like terms=3π​+36πn​+325π​​
36πn​=2πn
36πn​
Divide the numbers: 36​=2=2πn
325π​​=65π​
325π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅35π​
Multiply the numbers: 2⋅3=6=65π​
=3π​+2πn+65π​
Group like terms=2πn+3π​+65π​
x=2πn+3π​+65π​
x=2πn+3π​+65π​
x=2πn+3π​+65π​
x=2πn+3π​+6π​,x=2πn+3π​+65π​
Solutions for the range 0≤x<2πx=2π​,x=67π​
sin(x)−cos(x)=0,0≤x<2π:x=4π​,x=45π​
sin(x)−cos(x)=0,0≤x<2π
Rewrite using trig identities
sin(x)−cos(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)sin(x)−cos(x)​=cos(x)0​
Simplifycos(x)sin(x)​−1=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)tan(x)−1=0
tan(x)−1=0
Move 1to the right side
tan(x)−1=0
Add 1 to both sidestan(x)−1+1=0+1
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Solutions for the range 0≤x<2πx=4π​,x=45π​
Combine all the solutionsx=2π​,x=67π​,x=4π​,x=45π​
Find the undefined points:x=3π​,x=34π​,x=0,x=π
Find the zeros of the denominatorsin(33x−π​)sin(x)=0
Solving each part separatelysin(33x−π​)=0orsin(x)=0
sin(33x−π​)=0,0≤x<2π:x=3π​,x=34π​
sin(33x−π​)=0,0≤x<2π
General solutions for sin(33x−π​)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
33x−π​=0+2πn,33x−π​=π+2πn
33x−π​=0+2πn,33x−π​=π+2πn
Solve 33x−π​=0+2πn:x=2πn+3π​
33x−π​=0+2πn
0+2πn=2πn33x−π​=2πn
Multiply both sides by 3
33x−π​=2πn
Multiply both sides by 333(3x−π)​=3⋅2πn
Simplify3x−π=6πn
3x−π=6πn
Move πto the right side
3x−π=6πn
Add π to both sides3x−π+π=6πn+π
Simplify3x=6πn+π
3x=6πn+π
Divide both sides by 3
3x=6πn+π
Divide both sides by 333x​=36πn​+3π​
Simplifyx=2πn+3π​
x=2πn+3π​
Solve 33x−π​=π+2πn:x=34π​+2πn
33x−π​=π+2πn
Multiply both sides by 3
33x−π​=π+2πn
Multiply both sides by 333(3x−π)​=3π+3⋅2πn
Simplify3x−π=3π+6πn
3x−π=3π+6πn
Move πto the right side
3x−π=3π+6πn
Add π to both sides3x−π+π=3π+6πn+π
Simplify3x=4π+6πn
3x=4π+6πn
Divide both sides by 3
3x=4π+6πn
Divide both sides by 333x​=34π​+36πn​
Simplifyx=34π​+2πn
x=34π​+2πn
x=2πn+3π​,x=34π​+2πn
Solutions for the range 0≤x<2πx=3π​,x=34π​
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
Combine all the solutionsx=3π​,x=34π​,x=0,x=π
0,4π​,3π​,2π​,π,67π​,45π​,34π​
Identify the intervals0<x<4π​,4π​<x<3π​,3π​<x<2π​,2π​<x<π,π<x<67π​,67π​<x<45π​,45π​<x<34π​,34π​<x<2π
Summarize in a table:1−2sin(33x−π​)sin(x)−cos(x)sin(33x−π​)sin(x)sin(33x−π​)sin(x)(1−2sin(33x−π​))(sin(x)−cos(x))​​x=0+−−0Undefined​0<x<4π​+−−++​x=4π​+0−+0​4π​<x<3π​++−+−​x=3π​++0+Undefined​3π​<x<2π​+++++​x=2π​0+++0​2π​<x<π−+++−​x=π−++0Undefined​π<x<67π​−++−+​x=67π​0++−0​67π​<x<45π​+++−−​x=45π​+0+−0​45π​<x<34π​+−+−+​x=34π​+−0−Undefined​34π​<x<2π+−−−−​x=2π+−−0Undefined​​
Identify the intervals that satisfy the required condition: <04π​<x<3π​or2π​<x<πor67π​<x<45π​or34π​<x<2π
Apply the periodicity of (1−cot(x))(csc(x−3π​)−2)4π​+2πn<x<3π​+2πnor2π​+2πn<x<π+2πnor67π​+2πn<x<45π​+2πnor34π​+2πn<x<2π+2πn

Popular Examples

(cos(x))^2>= 1sin(x)<= (sqrt(3))/2 ,-pi<= x<= pi2cos(4x-pi/3)-1<= 0sin(x)<=-5/2arccos((x-5)/(10))-pi/3 >= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024