Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sin(2x)+sqrt(2))*tan(x)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(2sin(2x)+2​)⋅tan(x)<0

Solution

2π​+πn<x<85π​+πnor87π​+πn<x<π+πn
+2
Interval Notation
(2π​+πn,85π​+πn)∪(87π​+πn,π+πn)
Decimal
1.57079…+πn<x<1.96349…+πnor2.74889…+πn<x<3.14159…+πn
Solution steps
(2sin(2x)+2​)tan(x)<0
Periodicity of (2sin(2x)+2​)tan(x):π
(2sin(2x)+2​)tan(x)is composed of the following functions and periods:sin(2x)with periodicity of 22π​
The compound periodicity is:=π
Express with sin, cos
(2sin(2x)+2​)tan(x)<0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​(2sin(2x)+2​)cos(x)sin(x)​<0
(2sin(2x)+2​)cos(x)sin(x)​<0
Simplify (2sin(2x)+2​)cos(x)sin(x)​:cos(x)sin(x)(2sin(2x)+2​)​
(2sin(2x)+2​)cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)(2sin(2x)+2​)​
cos(x)sin(x)(2sin(2x)+2​)​<0
Find the zeroes and undifined points of cos(x)sin(x)(2sin(2x)+2​)​for 0≤x<π
To find the zeroes, set the inequality to zerocos(x)sin(x)(2sin(2x)+2​)​=0
cos(x)sin(x)(2sin(2x)+2​)​=0,0≤x<π:x=0,x=85π​,x=87π​
cos(x)sin(x)(2sin(2x)+2​)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0sin(x)(2sin(2x)+2​)=0
Solving each part separatelysin(x)=0or2sin(2x)+2​=0
sin(x)=0,0≤x<π:x=0
sin(x)=0,0≤x<π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<πx=0
2sin(2x)+2​=0,0≤x<π:x=85π​,x=87π​
2sin(2x)+2​=0,0≤x<π
Move 2​to the right side
2sin(2x)+2​=0
Subtract 2​ from both sides2sin(2x)+2​−2​=0−2​
Simplify2sin(2x)=−2​
2sin(2x)=−2​
Divide both sides by 2
2sin(2x)=−2​
Divide both sides by 222sin(2x)​=2−2​​
Simplifysin(2x)=−22​​
sin(2x)=−22​​
General solutions for sin(2x)=−22​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2x=45π​+2πn,2x=47π​+2πn
2x=45π​+2πn,2x=47π​+2πn
Solve 2x=45π​+2πn:x=85π​+πn
2x=45π​+2πn
Divide both sides by 2
2x=45π​+2πn
Divide both sides by 222x​=245π​​+22πn​
Simplify
22x​=245π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 245π​​+22πn​:85π​+πn
245π​​+22πn​
245π​​=85π​
245π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅25π​
Multiply the numbers: 4⋅2=8=85π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=85π​+πn
x=85π​+πn
x=85π​+πn
x=85π​+πn
Solve 2x=47π​+2πn:x=87π​+πn
2x=47π​+2πn
Divide both sides by 2
2x=47π​+2πn
Divide both sides by 222x​=247π​​+22πn​
Simplify
22x​=247π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 247π​​+22πn​:87π​+πn
247π​​+22πn​
247π​​=87π​
247π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅27π​
Multiply the numbers: 4⋅2=8=87π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=87π​+πn
x=87π​+πn
x=87π​+πn
x=87π​+πn
x=85π​+πn,x=87π​+πn
Solutions for the range 0≤x<πx=85π​,x=87π​
Combine all the solutionsx=0,x=85π​,x=87π​
Find the undefined points:x=2π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
0,2π​,85π​,87π​
Identify the intervals0<x<2π​,2π​<x<85π​,85π​<x<87π​,87π​<x<π
Summarize in a table:sin(x)2sin(2x)+2​cos(x)cos(x)sin(x)(2sin(2x)+2​)​​x=00++0​0<x<2π​++++​x=2π​++0Undefined​2π​<x<85π​++−−​x=85π​+0−0​85π​<x<87π​+−−+​x=87π​+0−0​87π​<x<π++−−​x=π0+−0​​
Identify the intervals that satisfy the required condition: <02π​<x<85π​or87π​<x<π
Apply the periodicity of (2sin(2x)+2​)tan(x)2π​+πn<x<85π​+πnor87π​+πn<x<π+πn

Popular Examples

cos(x)<=-(sqrt(2))/2 ,-pi<= x<= pi6sin(2x-(2pi)/3)>01>tan(x)cos(x)-(sqrt(3))/2 <= 0tan(x)<-\sqrt[4]{5},-pi<= x<= pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024