Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos((3x)/2)cos(x/2)>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(23x​)cos(2x​)≥0

Solution

x≤3π​+2πnorx=π+2πnorx≥35π​+2πn
+2
Interval Notation
(−∞+2πn,3π​+2πn]∪x=π+2πn∪[35π​+2πn,∞+2πn)
Decimal
x≤1.04719…+2πnorx=3.14159…+2πnorx≥5.23598…+2πn
Solution steps
cos(23x​)cos(2x​)≥0
Let: u=2x​cos(3u)cos(u)≥0
cos(3u)cos(u)≥0:πn≤u≤6π​+πnoru=2π​+πnor65π​+πn≤u≤π+πn
cos(3u)cos(u)≥0
Periodicity of cos(3u)cos(u):π
cos(3u)cos(u)is composed of the following functions and periods:cos(3u)with periodicity of 32π​
The compound periodicity is:=π
To find the zeroes, set the inequality to zerocos(3u)cos(u)=0
Solve cos(3u)cos(u)=0for 0≤u<π
cos(3u)cos(u)=0
Solving each part separately
cos(3u)=0:u=6π​oru=2π​oru=65π​
cos(3u)=0,0≤u<π
General solutions for cos(3u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
3u=2π​+2πn,3u=23π​+2πn
3u=2π​+2πn,3u=23π​+2πn
Solve 3u=2π​+2πn:u=6π​+32πn​
3u=2π​+2πn
Divide both sides by 3
3u=2π​+2πn
Divide both sides by 333u​=32π​​+32πn​
Simplify
33u​=32π​​+32πn​
Simplify 33u​:u
33u​
Divide the numbers: 33​=1=u
Simplify 32π​​+32πn​:6π​+32πn​
32π​​+32πn​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=6π​+32πn​
u=6π​+32πn​
u=6π​+32πn​
u=6π​+32πn​
Solve 3u=23π​+2πn:u=2π​+32πn​
3u=23π​+2πn
Divide both sides by 3
3u=23π​+2πn
Divide both sides by 333u​=323π​​+32πn​
Simplify
33u​=323π​​+32πn​
Simplify 33u​:u
33u​
Divide the numbers: 33​=1=u
Simplify 323π​​+32πn​:2π​+32πn​
323π​​+32πn​
323π​​=2π​
323π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅33π​
Multiply the numbers: 2⋅3=6=63π​
Cancel the common factor: 3=2π​
=2π​+32πn​
u=2π​+32πn​
u=2π​+32πn​
u=2π​+32πn​
u=6π​+32πn​,u=2π​+32πn​
Solutions for the range 0≤u<πu=6π​,u=2π​,u=65π​
cos(u)=0:u=2π​
cos(u)=0,0≤u<π
General solutions for cos(u)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
u=2π​+2πn,u=23π​+2πn
u=2π​+2πn,u=23π​+2πn
Solutions for the range 0≤u<πu=2π​
Combine all the solutions6π​or2π​or65π​
The intervals between the zeros0<u<6π​,6π​<u<2π​,2π​<u<65π​,65π​<u<π
Summarize in a table:cos(3u)cos(u)cos(3u)cos(u)​u=0+++​0<u<6π​+++​u=6π​0+0​6π​<u<2π​−+−​u=2π​000​2π​<u<65π​+−−​u=65π​0−0​65π​<u<π−−+​u=π−−+​​
Identify the intervals that satisfy the required condition: ≥0u=0or0<u<6π​oru=6π​oru=2π​oru=65π​or65π​<u<πoru=π
Merge Overlapping Intervals
0≤u≤6π​oru=2π​or65π​≤u<πoru=π
The union of two intervals is the set of numbers which are in either interval
u=0or0<u<6π​
0≤u<6π​
The union of two intervals is the set of numbers which are in either interval
0≤u<6π​oru=6π​
0≤u≤6π​
The union of two intervals is the set of numbers which are in either interval
0≤u≤6π​oru=2π​
0≤u≤6π​oru=2π​
The union of two intervals is the set of numbers which are in either interval
0≤u≤6π​oru=2π​oru=65π​
0≤u≤6π​oru=2π​oru=65π​
The union of two intervals is the set of numbers which are in either interval
0≤u≤6π​oru=2π​oru=65π​or65π​<u<π
0≤u≤6π​oru=2π​or65π​≤u<π
The union of two intervals is the set of numbers which are in either interval
0≤u≤6π​oru=2π​or65π​≤u<πoru=π
0≤u≤6π​oru=2π​or65π​≤u≤π
0≤u≤6π​oru=2π​or65π​≤u≤π
Apply the periodicity of cos(3u)cos(u)πn≤u≤6π​+πnoru=2π​+πnor65π​+πn≤u≤π+πn
πn≤u≤6π​+πnoru=2π​+πnor65π​+πn≤u≤π+πn
Substitute back 2x​=uπn≤(2x​)≤6π​+πnor(2x​)=2π​+πnor65π​+πn≤(2x​)≤π+πn
πn≤(2x​)≤6π​+πnor(2x​)=2π​+πnor65π​+πn≤(2x​)≤π+πn:x≤3π​+2πnorx=π+2πnorx≥35π​+2πn
πn≤(2x​)≤6π​+πnor(2x​)=2π​+πnor65π​+πn≤(2x​)≤π+πn
πn≤2x​≤6π​+πn:x≤3π​+2πn
πn≤2x​≤6π​+πn
If a≤u≤bthen a≤uandu≤bπn≤2x​and2x​≤6π​+πn
πn≤2x​:x≥2πn
πn≤2x​
Switch sides2x​≥πn
Multiply both sides by 2
2x​≥πn
Multiply both sides by 222x​≥2πn
Simplifyx≥2πn
x≥2πn
2x​≤6π​+πn:x≤3π​+2πn
2x​≤6π​+πn
Multiply both sides by 2
2x​≤6π​+πn
Multiply both sides by 222x​≤2⋅6π​+2πn
Simplify
22x​≤2⋅6π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅6π​+2πn:3π​+2πn
2⋅6π​+2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
=3π​+2πn
x≤3π​+2πn
x≤3π​+2πn
x≤3π​+2πn
Combine the intervalsx≥2πnandx≤3π​+2πn
Merge Overlapping Intervalsx≤3π​+2πn
2x​=2π​+πn:x=π+2πn
2x​=2π​+πn
Multiply both sides by 2
2x​=2π​+πn
Multiply both sides by 222x​=2⋅2π​+2πn
Simplify
22x​=2⋅2π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅2π​+2πn:π+2πn
2⋅2π​+2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
=π+2πn
x=π+2πn
x=π+2πn
x=π+2πn
65π​+πn≤2x​≤π+πn:x≥35π​+2πn
65π​+πn≤2x​≤π+πn
If a≤u≤bthen a≤uandu≤b65π​+πn≤2x​and2x​≤π+πn
65π​+πn≤2x​:x≥35π​+2πn
65π​+πn≤2x​
Switch sides2x​≥65π​+πn
Multiply both sides by 2
2x​≥65π​+πn
Multiply both sides by 222x​≥2⋅65π​+2πn
Simplify
22x​≥2⋅65π​+2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅65π​+2πn:35π​+2πn
2⋅65π​+2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
=35π​+2πn
x≥35π​+2πn
x≥35π​+2πn
x≥35π​+2πn
2x​≤π+πn:x≤2π+2πn
2x​≤π+πn
Multiply both sides by 2
2x​≤π+πn
Multiply both sides by 222x​≤2π+2πn
Simplifyx≤2π+2πn
x≤2π+2πn
Combine the intervalsx≥35π​+2πnandx≤2π+2πn
Merge Overlapping Intervalsx≥35π​+2πn
Combine the intervalsx≤3π​+2πnorx=π+2πnorx≥35π​+2πn
x≤3π​+2πnorx=π+2πnorx≥35π​+2πn

Popular Examples

(2sin(x)-1)*(sqrt(3)tan(x)+1)>0(2cos(x)-1)(2cos(x)+sqrt(2))<02cos(3x-1/2)>= (sqrt(2))/22cos(x)+sqrt(2)<0sin(2*x)>= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024