Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)> 1/(sin(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)>sin(x)1​

Solution

π+2πn<x<23π​+2πnor23π​+2πn<x<2π+2πn
+2
Interval Notation
(π+2πn,23π​+2πn)∪(23π​+2πn,2π+2πn)
Decimal
3.14159…+2πn<x<4.71238…+2πnor4.71238…+2πn<x<6.28318…+2πn
Solution steps
sin(x)>sin(x)1​
Let: u=sin(x)u>u1​
u>u1​:−1<u<0oru>1
u>u1​
Rewrite in standard form
u>u1​
Subtract u1​ from both sidesu−u1​>u1​−u1​
Simplifyu−u1​>0
Simplify u−u1​:uu2−1​
u−u1​
Convert element to fraction: u=uuu​=uuu​−u1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=uuu−1​
uu−1=u2−1
uu−1
uu=u2
uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=u1+1
Add the numbers: 1+1=2=u2
=u2−1
=uu2−1​
uu2−1​>0
uu2−1​>0
Factor uu2−1​:u(u+1)(u−1)​
uu2−1​
Factor u2−1:(u+1)(u−1)
u2−1
Rewrite 1 as 12=u2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=u(u+1)(u−1)​
u(u+1)(u−1)​>0
Identify the intervals
Find the signs of the factors of u(u+1)(u−1)​
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Find the signs of u
u=0
u<0
u>0
Find singularity points
Find the zeros of the denominator u:u=0
Summarize in a table:u+1u−1uu(u+1)(u−1)​​u<−1−−−−​u=−10−−0​−1<u<0+−−+​u=0+−0Undefined​0<u<1+−+−​u=1+0+0​u>1++++​​
Identify the intervals that satisfy the required condition: >0−1<u<0oru>1
−1<u<0oru>1
−1<u<0oru>1
Substitute back u=sin(x)−1<sin(x)<0orsin(x)>1
−1<sin(x)<0:π+2πn<x<23π​+2πnor23π​+2πn<x<2π+2πn
−1<sin(x)<0
If a<u<bthen a<uandu<b−1<sin(x)andsin(x)<0
−1<sin(x):−2π​+2πn<x<23π​+2πn
−1<sin(x)
Switch sidessin(x)>−1
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(−1)+2πn<x<π−arcsin(−1)+2πn
Simplify arcsin(−1):−2π​
arcsin(−1)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−1)=−arcsin(1)=−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​
arcsin(1)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=2π​
=−2π​
Simplify π−arcsin(−1):23π​
π−arcsin(−1)
arcsin(−1)=−2π​
arcsin(−1)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−1)=−arcsin(1)=−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​
arcsin(1)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=2π​
=−2π​
=π−(−2π​)
Simplify
π−(−2π​)
Apply rule −(−a)=a=π+2π​
Convert element to fraction: π=2π2​=2π2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π2+π​
Add similar elements: 2π+π=3π=23π​
=23π​
−2π​+2πn<x<23π​+2πn
sin(x)<0:−π+2πn<x<2πn
sin(x)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<x<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<x<0+2πn
Simplify−π+2πn<x<2πn
Combine the intervals−2π​+2πn<x<23π​+2πnand−π+2πn<x<2πn
Merge Overlapping Intervalsπ+2πn<x<23π​+2πnor23π​+2πn<x<2π+2πn
sin(x)>1:False for all x∈R
sin(x)>1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervals(π+2πn<x<23π​+2πnor23π​+2πn<x<2π+2πn)orFalseforallx∈R
Merge Overlapping Intervalsπ+2πn<x<23π​+2πnor23π​+2πn<x<2π+2πn

Popular Examples

<=-1tan(x/2-pi/3)<= sqrt(3)2sin(x)cos(x)>= (sqrt(3))/2(sin(2θ))/2 <= 0.451cot((3pi+x)/2)<= 1cos(2x+30)> 1/2 ,0<= x<= 180
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024