解答
sin3(x)=cos2(x)
解答
x=0.85546…+2πn,x=π−0.85546…+2πn
+1
度数
x=49.01468…∘+360∘n,x=130.98531…∘+360∘n求解步骤
sin3(x)=cos2(x)
两边减去 cos2(x)sin3(x)−cos2(x)=0
使用三角恒等式改写
−cos2(x)+sin3(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−(1−sin2(x))+sin3(x)
−(1−sin2(x)):−1+sin2(x)
−(1−sin2(x))
打开括号=−(1)−(−sin2(x))
使用加减运算法则−(−a)=a,−(a)=−a=−1+sin2(x)
=−1+sin2(x)+sin3(x)
−1+sin2(x)+sin3(x)=0
用替代法求解
−1+sin2(x)+sin3(x)=0
令:sin(x)=u−1+u2+u3=0
−1+u2+u3=0:u≈0.75487…
−1+u2+u3=0
改写成标准形式 anxn+…+a1x+a0=0u3+u2−1=0
使用牛顿-拉弗森方法找到 u3+u2−1=0 的一个解:u≈0.75487…
u3+u2−1=0
牛顿-拉弗森近似法定义
f(u)=u3+u2−1
找到 f′(u):3u2+2u
dud(u3+u2−1)
使用微分加减法定则: (f±g)′=f′±g′=dud(u3)+dud(u2)−dud(1)
dud(u3)=3u2
dud(u3)
使用幂法则: dxd(xa)=a⋅xa−1=3u3−1
化简=3u2
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(1)=0
dud(1)
常数微分: dxd(a)=0=0
=3u2+2u−0
化简=3u2+2u
令 u0=1计算 un+1 至 Δun+1<0.000001
u1=0.8:Δu1=0.2
f(u0)=13+12−1=1f′(u0)=3⋅12+2⋅1=5u1=0.8
Δu1=∣0.8−1∣=0.2Δu1=0.2
u2=0.75681…:Δu2=0.04318…
f(u1)=0.83+0.82−1=0.152f′(u1)=3⋅0.82+2⋅0.8=3.52u2=0.75681…
Δu2=∣0.75681…−0.8∣=0.04318…Δu2=0.04318…
u3=0.75488…:Δu3=0.00193…
f(u2)=0.75681…3+0.75681…2−1=0.00625…f′(u2)=3⋅0.75681…2+2⋅0.75681…=3.23195…u3=0.75488…
Δu3=∣0.75488…−0.75681…∣=0.00193…Δu3=0.00193…
u4=0.75487…:Δu4=3.80818E−6
f(u3)=0.75488…3+0.75488…2−1=0.00001…f′(u3)=3⋅0.75488…2+2⋅0.75488…=3.21930…u4=0.75487…
Δu4=∣0.75487…−0.75488…∣=3.80818E−6Δu4=3.80818E−6
u5=0.75487…:Δu5=1.47065E−11
f(u4)=0.75487…3+0.75487…2−1=4.73444E−11f′(u4)=3⋅0.75487…2+2⋅0.75487…=3.21927…u5=0.75487…
Δu5=∣0.75487…−0.75487…∣=1.47065E−11Δu5=1.47065E−11
u≈0.75487…
使用长除法 Equation0:u−0.75487…u3+u2−1=u2+1.75487…u+1.32471…
u2+1.75487…u+1.32471…≈0
使用牛顿-拉弗森方法找到 u2+1.75487…u+1.32471…=0 的一个解:u∈R无解
u2+1.75487…u+1.32471…=0
牛顿-拉弗森近似法定义
f(u)=u2+1.75487…u+1.32471…
找到 f′(u):2u+1.75487…
dud(u2+1.75487…u+1.32471…)
使用微分加减法定则: (f±g)′=f′±g′=dud(u2)+dud(1.75487…u)+dud(1.32471…)
dud(u2)=2u
dud(u2)
使用幂法则: dxd(xa)=a⋅xa−1=2u2−1
化简=2u
dud(1.75487…u)=1.75487…
dud(1.75487…u)
将常数提出: (a⋅f)′=a⋅f′=1.75487…dudu
使用常见微分定则: dudu=1=1.75487…⋅1
化简=1.75487…
dud(1.32471…)=0
dud(1.32471…)
常数微分: dxd(a)=0=0
=2u+1.75487…+0
化简=2u+1.75487…
令 u0=−1计算 un+1 至 Δun+1<0.000001
u1=1.32471…:Δu1=2.32471…
f(u0)=(−1)2+1.75487…(−1)+1.32471…=0.56984…f′(u0)=2(−1)+1.75487…=−0.24512…u1=1.32471…
Δu1=∣1.32471…−(−1)∣=2.32471…Δu1=2.32471…
u2=0.09766…:Δu2=1.22705…
f(u1)=1.32471…2+1.75487…⋅1.32471…+1.32471…=5.40431…f′(u1)=2⋅1.32471…+1.75487…=4.40431…u2=0.09766…
Δu2=∣0.09766…−1.32471…∣=1.22705…Δu2=1.22705…
u3=−0.67437…:Δu3=0.77204…
f(u2)=0.09766…2+1.75487…⋅0.09766…+1.32471…=1.50565…f′(u2)=2⋅0.09766…+1.75487…=1.95021…u3=−0.67437…
Δu3=∣−0.67437…−0.09766…∣=0.77204…Δu3=0.77204…
u4=−2.14204…:Δu4=1.46766…
f(u3)=(−0.67437…)2+1.75487…(−0.67437…)+1.32471…=0.59605…f′(u3)=2(−0.67437…)+1.75487…=0.40612…u4=−2.14204…
Δu4=∣−2.14204…−(−0.67437…)∣=1.46766…Δu4=1.46766…
u5=−1.29037…:Δu5=0.85166…
f(u4)=(−2.14204…)2+1.75487…(−2.14204…)+1.32471…=2.15403…f′(u4)=2(−2.14204…)+1.75487…=−2.52920…u5=−1.29037…
Δu5=∣−1.29037…−(−2.14204…)∣=0.85166…Δu5=0.85166…
u6=−0.41210…:Δu6=0.87826…
f(u5)=(−1.29037…)2+1.75487…(−1.29037…)+1.32471…=0.72533…f′(u5)=2(−1.29037…)+1.75487…=−0.82587…u6=−0.41210…
Δu6=∣−0.41210…−(−1.29037…)∣=0.87826…Δu6=0.87826…
u7=−1.24093…:Δu7=0.82882…
f(u6)=(−0.41210…)2+1.75487…(−0.41210…)+1.32471…=0.77135…f′(u6)=2(−0.41210…)+1.75487…=0.93065…u7=−1.24093…
Δu7=∣−1.24093…−(−0.41210…)∣=0.82882…Δu7=0.82882…
u8=−0.29600…:Δu8=0.94492…
f(u7)=(−1.24093…)2+1.75487…(−1.24093…)+1.32471…=0.68694…f′(u7)=2(−1.24093…)+1.75487…=−0.72698…u8=−0.29600…
Δu8=∣−0.29600…−(−1.24093…)∣=0.94492…Δu8=0.94492…
u9=−1.06383…:Δu9=0.76782…
f(u8)=(−0.29600…)2+1.75487…(−0.29600…)+1.32471…=0.89288…f′(u8)=2(−0.29600…)+1.75487…=1.16286…u9=−1.06383…
Δu9=∣−1.06383…−(−0.29600…)∣=0.76782…Δu9=0.76782…
u10=0.51763…:Δu10=1.58147…
f(u9)=(−1.06383…)2+1.75487…(−1.06383…)+1.32471…=0.58956…f′(u9)=2(−1.06383…)+1.75487…=−0.37279…u10=0.51763…
Δu10=∣0.51763…−(−1.06383…)∣=1.58147…Δu10=1.58147…
无法得出解
解是u≈0.75487…
u=sin(x)代回sin(x)≈0.75487…
sin(x)≈0.75487…
sin(x)=0.75487…:x=arcsin(0.75487…)+2πn,x=π−arcsin(0.75487…)+2πn
sin(x)=0.75487…
使用反三角函数性质
sin(x)=0.75487…
sin(x)=0.75487…的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.75487…)+2πn,x=π−arcsin(0.75487…)+2πn
x=arcsin(0.75487…)+2πn,x=π−arcsin(0.75487…)+2πn
合并所有解x=arcsin(0.75487…)+2πn,x=π−arcsin(0.75487…)+2πn
以小数形式表示解x=0.85546…+2πn,x=π−0.85546…+2πn