Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

196sin(θ)-49cos(θ)=160

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

196sin(θ)−49cos(θ)=160

Solución

θ=2.47257…+2πn,θ=1.15897…+2πn
+1
Grados
θ=141.66783…∘+360∘n,θ=66.40464…∘+360∘n
Pasos de solución
196sin(θ)−49cos(θ)=160
Sumar 49cos(θ) a ambos lados196sin(θ)=160+49cos(θ)
Elevar al cuadrado ambos lados(196sin(θ))2=(160+49cos(θ))2
Restar (160+49cos(θ))2 de ambos lados38416sin2(θ)−25600−15680cos(θ)−2401cos2(θ)=0
Re-escribir usando identidades trigonométricas
−25600−15680cos(θ)−2401cos2(θ)+38416sin2(θ)
Utilizar la identidad pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−25600−15680cos(θ)−2401cos2(θ)+38416(1−cos2(θ))
Simplificar −25600−15680cos(θ)−2401cos2(θ)+38416(1−cos2(θ)):−40817cos2(θ)−15680cos(θ)+12816
−25600−15680cos(θ)−2401cos2(θ)+38416(1−cos2(θ))
Expandir 38416(1−cos2(θ)):38416−38416cos2(θ)
38416(1−cos2(θ))
Poner los parentesis utilizando: a(b−c)=ab−aca=38416,b=1,c=cos2(θ)=38416⋅1−38416cos2(θ)
Multiplicar los numeros: 38416⋅1=38416=38416−38416cos2(θ)
=−25600−15680cos(θ)−2401cos2(θ)+38416−38416cos2(θ)
Simplificar −25600−15680cos(θ)−2401cos2(θ)+38416−38416cos2(θ):−40817cos2(θ)−15680cos(θ)+12816
−25600−15680cos(θ)−2401cos2(θ)+38416−38416cos2(θ)
Agrupar términos semejantes=−15680cos(θ)−2401cos2(θ)−38416cos2(θ)−25600+38416
Sumar elementos similares: −2401cos2(θ)−38416cos2(θ)=−40817cos2(θ)=−15680cos(θ)−40817cos2(θ)−25600+38416
Sumar/restar lo siguiente: −25600+38416=12816=−40817cos2(θ)−15680cos(θ)+12816
=−40817cos2(θ)−15680cos(θ)+12816
=−40817cos2(θ)−15680cos(θ)+12816
12816−15680cos(θ)−40817cos2(θ)=0
Usando el método de sustitución
12816−15680cos(θ)−40817cos2(θ)=0
Sea: cos(θ)=u12816−15680u−40817u2=0
12816−15680u−40817u2=0:u=−8163415680+2338305088​​,u=816342338305088​−15680​
12816−15680u−40817u2=0
Escribir en la forma binómica ax2+bx+c=0−40817u2−15680u+12816=0
Resolver con la fórmula general para ecuaciones de segundo grado:
−40817u2−15680u+12816=0
Formula general para ecuaciones de segundo grado:
Para a=−40817,b=−15680,c=12816u1,2​=2(−40817)−(−15680)±(−15680)2−4(−40817)⋅12816​​
u1,2​=2(−40817)−(−15680)±(−15680)2−4(−40817)⋅12816​​
(−15680)2−4(−40817)⋅12816​=2338305088​
(−15680)2−4(−40817)⋅12816​
Aplicar la regla −(−a)=a=(−15680)2+4⋅40817⋅12816​
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−15680)2=156802=156802+4⋅40817⋅12816​
Multiplicar los numeros: 4⋅40817⋅12816=2092442688=156802+2092442688​
156802=245862400=245862400+2092442688​
Sumar: 245862400+2092442688=2338305088=2338305088​
u1,2​=2(−40817)−(−15680)±2338305088​​
Separar las solucionesu1​=2(−40817)−(−15680)+2338305088​​,u2​=2(−40817)−(−15680)−2338305088​​
u=2(−40817)−(−15680)+2338305088​​:−8163415680+2338305088​​
2(−40817)−(−15680)+2338305088​​
Quitar los parentesis: (−a)=−a,−(−a)=a=−2⋅4081715680+2338305088​​
Multiplicar los numeros: 2⋅40817=81634=−8163415680+2338305088​​
Aplicar las propiedades de las fracciones: −ba​=−ba​=−8163415680+2338305088​​
u=2(−40817)−(−15680)−2338305088​​:816342338305088​−15680​
2(−40817)−(−15680)−2338305088​​
Quitar los parentesis: (−a)=−a,−(−a)=a=−2⋅4081715680−2338305088​​
Multiplicar los numeros: 2⋅40817=81634=−8163415680−2338305088​​
Aplicar las propiedades de las fracciones: −b−a​=ba​15680−2338305088​=−(2338305088​−15680)=816342338305088​−15680​
Las soluciones a la ecuación de segundo grado son: u=−8163415680+2338305088​​,u=816342338305088​−15680​
Sustituir en la ecuación u=cos(θ)cos(θ)=−8163415680+2338305088​​,cos(θ)=816342338305088​−15680​
cos(θ)=−8163415680+2338305088​​,cos(θ)=816342338305088​−15680​
cos(θ)=−8163415680+2338305088​​:θ=arccos(−8163415680+2338305088​​)+2πn,θ=−arccos(−8163415680+2338305088​​)+2πn
cos(θ)=−8163415680+2338305088​​
Aplicar propiedades trigonométricas inversas
cos(θ)=−8163415680+2338305088​​
Soluciones generales para cos(θ)=−8163415680+2338305088​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−8163415680+2338305088​​)+2πn,θ=−arccos(−8163415680+2338305088​​)+2πn
θ=arccos(−8163415680+2338305088​​)+2πn,θ=−arccos(−8163415680+2338305088​​)+2πn
cos(θ)=816342338305088​−15680​:θ=arccos(816342338305088​−15680​)+2πn,θ=2π−arccos(816342338305088​−15680​)+2πn
cos(θ)=816342338305088​−15680​
Aplicar propiedades trigonométricas inversas
cos(θ)=816342338305088​−15680​
Soluciones generales para cos(θ)=816342338305088​−15680​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(816342338305088​−15680​)+2πn,θ=2π−arccos(816342338305088​−15680​)+2πn
θ=arccos(816342338305088​−15680​)+2πn,θ=2π−arccos(816342338305088​−15680​)+2πn
Combinar toda las solucionesθ=arccos(−8163415680+2338305088​​)+2πn,θ=−arccos(−8163415680+2338305088​​)+2πn,θ=arccos(816342338305088​−15680​)+2πn,θ=2π−arccos(816342338305088​−15680​)+2πn
Verificar las soluciones sustituyendo en la ecuación original
Verificar las soluciones sustituyéndolas en 196sin(θ)−49cos(θ)=160
Quitar las que no concuerden con la ecuación.
Verificar la solución arccos(−8163415680+2338305088​​)+2πn:Verdadero
arccos(−8163415680+2338305088​​)+2πn
Sustituir n=1arccos(−8163415680+2338305088​​)+2π1
Multiplicar 196sin(θ)−49cos(θ)=160 por θ=arccos(−8163415680+2338305088​​)+2π1196sin(arccos(−8163415680+2338305088​​)+2π1)−49cos(arccos(−8163415680+2338305088​​)+2π1)=160
Simplificar160=160
⇒Verdadero
Verificar la solución −arccos(−8163415680+2338305088​​)+2πn:Falso
−arccos(−8163415680+2338305088​​)+2πn
Sustituir n=1−arccos(−8163415680+2338305088​​)+2π1
Multiplicar 196sin(θ)−49cos(θ)=160 por θ=−arccos(−8163415680+2338305088​​)+2π1196sin(−arccos(−8163415680+2338305088​​)+2π1)−49cos(−arccos(−8163415680+2338305088​​)+2π1)=160
Simplificar−83.12602…=160
⇒Falso
Verificar la solución arccos(816342338305088​−15680​)+2πn:Verdadero
arccos(816342338305088​−15680​)+2πn
Sustituir n=1arccos(816342338305088​−15680​)+2π1
Multiplicar 196sin(θ)−49cos(θ)=160 por θ=arccos(816342338305088​−15680​)+2π1196sin(arccos(816342338305088​−15680​)+2π1)−49cos(arccos(816342338305088​−15680​)+2π1)=160
Simplificar160=160
⇒Verdadero
Verificar la solución 2π−arccos(816342338305088​−15680​)+2πn:Falso
2π−arccos(816342338305088​−15680​)+2πn
Sustituir n=12π−arccos(816342338305088​−15680​)+2π1
Multiplicar 196sin(θ)−49cos(θ)=160 por θ=2π−arccos(816342338305088​−15680​)+2π1196sin(2π−arccos(816342338305088​−15680​)+2π1)−49cos(2π−arccos(816342338305088​−15680​)+2π1)=160
Simplificar−199.22691…=160
⇒Falso
θ=arccos(−8163415680+2338305088​​)+2πn,θ=arccos(816342338305088​−15680​)+2πn
Mostrar soluciones en forma decimalθ=2.47257…+2πn,θ=1.15897…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

4tan(x)+3=-78tan(θ)+15=0cos(x)=(48.4)/(54.5)cos(θ)=-7/10cot(b)=(tan(b)cot(b))/(csc(b))
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024