Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

3sin^2(θ)=2sin(θ)+3

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

3sin2(θ)=2sin(θ)+3

Soluzione

θ=−0.80489…+2πn,θ=π+0.80489…+2πn
+1
Gradi
θ=−46.11719…∘+360∘n,θ=226.11719…∘+360∘n
Fasi della soluzione
3sin2(θ)=2sin(θ)+3
Risolvi per sostituzione
3sin2(θ)=2sin(θ)+3
Sia: sin(θ)=u3u2=2u+3
3u2=2u+3:u=31+10​​,u=31−10​​
3u2=2u+3
Spostare 3a sinistra dell'equazione
3u2=2u+3
Sottrarre 3 da entrambi i lati3u2−3=2u+3−3
Semplificare3u2−3=2u
3u2−3=2u
Spostare 2ua sinistra dell'equazione
3u2−3=2u
Sottrarre 2u da entrambi i lati3u2−3−2u=2u−2u
Semplificare3u2−3−2u=0
3u2−3−2u=0
Scrivi in forma standard ax2+bx+c=03u2−2u−3=0
Risolvi con la formula quadratica
3u2−2u−3=0
Formula dell'equazione quadratica:
Per a=3,b=−2,c=−3u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−3)​​
u1,2​=2⋅3−(−2)±(−2)2−4⋅3(−3)​​
(−2)2−4⋅3(−3)​=210​
(−2)2−4⋅3(−3)​
Applicare la regola −(−a)=a=(−2)2+4⋅3⋅3​
Applica la regola degli esponenti: (−a)n=an,se n è pari(−2)2=22=22+4⋅3⋅3​
Moltiplica i numeri: 4⋅3⋅3=36=22+36​
22=4=4+36​
Aggiungi i numeri: 4+36=40=40​
Fattorizzazione prima di 40:23⋅5
40
40diviso per 240=20⋅2=2⋅20
20diviso per 220=10⋅2=2⋅2⋅10
10diviso per 210=5⋅2=2⋅2⋅2⋅5
2,5 sono tutti numeri primi, quindi non è possibile ulteriore fattorizzazione=2⋅2⋅2⋅5
=23⋅5
=23⋅5​
Applica la regola degli esponenti: ab+c=ab⋅ac=22⋅2⋅5​
Applicare la regola della radice: nab​=na​nb​=22​2⋅5​
Applicare la regola della radice: nan​=a22​=2=22⋅5​
Affinare=210​
u1,2​=2⋅3−(−2)±210​​
Separare le soluzioniu1​=2⋅3−(−2)+210​​,u2​=2⋅3−(−2)−210​​
u=2⋅3−(−2)+210​​:31+10​​
2⋅3−(−2)+210​​
Applicare la regola −(−a)=a=2⋅32+210​​
Moltiplica i numeri: 2⋅3=6=62+210​​
Fattorizza 2+210​:2(1+10​)
2+210​
Riscrivi come=2⋅1+210​
Fattorizzare dal termine comune 2=2(1+10​)
=62(1+10​)​
Cancella il fattore comune: 2=31+10​​
u=2⋅3−(−2)−210​​:31−10​​
2⋅3−(−2)−210​​
Applicare la regola −(−a)=a=2⋅32−210​​
Moltiplica i numeri: 2⋅3=6=62−210​​
Fattorizza 2−210​:2(1−10​)
2−210​
Riscrivi come=2⋅1−210​
Fattorizzare dal termine comune 2=2(1−10​)
=62(1−10​)​
Cancella il fattore comune: 2=31−10​​
Le soluzioni dell'equazione quadratica sono:u=31+10​​,u=31−10​​
Sostituire indietro u=sin(θ)sin(θ)=31+10​​,sin(θ)=31−10​​
sin(θ)=31+10​​,sin(θ)=31−10​​
sin(θ)=31+10​​:Nessuna soluzione
sin(θ)=31+10​​
−1≤sin(x)≤1Nessunasoluzione
sin(θ)=31−10​​:θ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
sin(θ)=31−10​​
Applica le proprietà inverse delle funzioni trigonometriche
sin(θ)=31−10​​
Soluzioni generali per sin(θ)=31−10​​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnθ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
θ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
Combinare tutte le soluzioniθ=arcsin(31−10​​)+2πn,θ=π+arcsin(−31−10​​)+2πn
Mostra le soluzioni in forma decimaleθ=−0.80489…+2πn,θ=π+0.80489…+2πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

(sin(180)}{20}=\frac{sin(a))/820sin(180∘)​=8sin(a)​(sin(x)+cos(x))^2=1^2(sin(x)+cos(x))2=12tan(4x)=12tan(4x)=124csc(B)+5=04csc(B)+5=02cos(pi/5 x)=sqrt(3)2cos(5π​x)=3​
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024