Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

solvefor x,2cos(x)=2cos(3x)

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

résoudre pour x,2cos(x)=2cos(3x)

Solution

x=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn
+1
Degrés
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n,x=0∘+360∘n
étapes des solutions
2cos(x)=2cos(3x)
Soustraire 2cos(3x) des deux côtés2cos(x)−2cos(3x)=0
Récrire en utilisant des identités trigonométriques
−2cos(3x)+2cos(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Récrire en utilisant des identités trigonométriques
cos(3x)
Récrire comme=cos(2x+x)
Utiliser l'identité de la somme de l'angle: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Utiliser l'identité d'angle double: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplifier cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Appliquer la règle de l'exposant: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Additionner les nombres : 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Utiliser l'identité d'angle double: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Utiliser l'identité hyperbolique: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Développer (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Développer cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Appliquer la loi de la distribution: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplifier 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Appliquer la règle de l'exposant: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Additionner les nombres : 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiplier: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Développer −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Appliquer la loi de la distribution: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Appliquer les règles des moins et des plus−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplifier −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiplier les nombres : 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Appliquer la règle de l'exposant: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Additionner les nombres : 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplifier 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Grouper comme termes=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Additionner les éléments similaires : 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Additionner les éléments similaires : −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=−2(4cos3(x)−3cos(x))+2cos(x)
Simplifier −2(4cos3(x)−3cos(x))+2cos(x):−8cos3(x)+8cos(x)
−2(4cos3(x)−3cos(x))+2cos(x)
Développer −2(4cos3(x)−3cos(x)):−8cos3(x)+6cos(x)
−2(4cos3(x)−3cos(x))
Appliquer la loi de la distribution: a(b−c)=ab−aca=−2,b=4cos3(x),c=3cos(x)=−2⋅4cos3(x)−(−2)⋅3cos(x)
Appliquer les règles des moins et des plus−(−a)=a=−2⋅4cos3(x)+2⋅3cos(x)
Simplifier −2⋅4cos3(x)+2⋅3cos(x):−8cos3(x)+6cos(x)
−2⋅4cos3(x)+2⋅3cos(x)
Multiplier les nombres : 2⋅4=8=−8cos3(x)+2⋅3cos(x)
Multiplier les nombres : 2⋅3=6=−8cos3(x)+6cos(x)
=−8cos3(x)+6cos(x)
=−8cos3(x)+6cos(x)+2cos(x)
Additionner les éléments similaires : 6cos(x)+2cos(x)=8cos(x)=−8cos3(x)+8cos(x)
=−8cos3(x)+8cos(x)
8cos(x)−8cos3(x)=0
Résoudre par substitution
8cos(x)−8cos3(x)=0
Soit : cos(x)=u8u−8u3=0
8u−8u3=0:u=0,u=−1,u=1
8u−8u3=0
Factoriser 8u−8u3:−8u(u+1)(u−1)
8u−8u3
Factoriser le terme commun −8u:−8u(u2−1)
−8u3+8u
Appliquer la règle de l'exposant: ab+c=abacu3=u2u=−8u2u+8u
Factoriser le terme commun −8u=−8u(u2−1)
=−8u(u2−1)
Factoriser u2−1:(u+1)(u−1)
u2−1
Récrire 1 comme 12=u2−12
Appliquer la formule de différence de deux carrés : x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=−8u(u+1)(u−1)
−8u(u+1)(u−1)=0
En utilisant le principe du facteur zéro : Si ab=0alors a=0ou b=0u=0oru+1=0oru−1=0
Résoudre u+1=0:u=−1
u+1=0
Déplacer 1vers la droite
u+1=0
Soustraire 1 des deux côtésu+1−1=0−1
Simplifieru=−1
u=−1
Résoudre u−1=0:u=1
u−1=0
Déplacer 1vers la droite
u−1=0
Ajouter 1 aux deux côtésu−1+1=0+1
Simplifieru=1
u=1
Les solutions sontu=0,u=−1,u=1
Remplacer u=cos(x)cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Solutions générales pour cos(x)=0
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Solutions générales pour cos(x)=−1
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=1:x=2πn
cos(x)=1
Solutions générales pour cos(x)=1
Tableau de périodicité cos(x) avec un cycle 2πn :
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Résoudre x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Combiner toutes les solutionsx=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn

Graphe

Sorry, your browser does not support this application
Afficher un graph interactif

Exemples populaires

sin(x)=1-2sin^2(x)2sin^2(t)-cos(t)-1=04cos^2(θ)=1,0<= θ<2picos(x/2+pi/3)=(sqrt(2))/2tan(θ)=8.2
Outils d'étudeSolveur mathématique IADes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension ChromeSymbolab Math Solver API
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeTermesPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024