解答
cos(x)+1sin(x)+cos(x)=tan(x)
解答
x=0.66623…+2πn,x=π−0.66623…+2πn
+1
度数
x=38.17270…∘+360∘n,x=141.82729…∘+360∘n求解步骤
cos(x)+1sin(x)+cos(x)=tan(x)
两边减去 tan(x)cos(x)+1sin(x)+cos(x)−tan(x)=0
化简 cos(x)+1sin(x)+cos(x)−tan(x):cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)
cos(x)+1sin(x)+cos(x)−tan(x)
将项转换为分式: tan(x)=cos(x)+1tan(x)(cos(x)+1)=cos(x)+1sin(x)+cos(x)−cos(x)+1tan(x)(cos(x)+1)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)
cos(x)+1sin(x)+cos(x)−tan(x)(cos(x)+1)=0
g(x)f(x)=0⇒f(x)=0sin(x)+cos(x)−tan(x)(cos(x)+1)=0
用 sin, cos 表示sin(x)+cos(x)−cos(x)sin(x)(cos(x)+1)=0
化简 sin(x)+cos(x)−cos(x)sin(x)(cos(x)+1):cos(x)cos2(x)−sin(x)
sin(x)+cos(x)−cos(x)sin(x)(cos(x)+1)
乘 cos(x)sin(x)(cos(x)+1):cos(x)sin(x)(cos(x)+1)
cos(x)sin(x)(cos(x)+1)
分式相乘: a⋅cb=ca⋅b=cos(x)sin(x)(cos(x)+1)
=sin(x)+cos(x)−cos(x)sin(x)(cos(x)+1)
将项转换为分式: sin(x)=cos(x)sin(x)cos(x),cos(x)=cos(x)cos(x)cos(x)=cos(x)sin(x)cos(x)+cos(x)cos(x)cos(x)−cos(x)sin(x)(cos(x)+1)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)
sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)=sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
sin(x)cos(x)+cos(x)cos(x)−sin(x)(cos(x)+1)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
数字相加:1+1=2=cos2(x)
=sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
=cos(x)sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
乘开 sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1):cos2(x)−sin(x)
sin(x)cos(x)+cos2(x)−sin(x)(cos(x)+1)
乘开 −sin(x)(cos(x)+1):−sin(x)cos(x)−sin(x)
−sin(x)(cos(x)+1)
使用分配律: a(b+c)=ab+aca=−sin(x),b=cos(x),c=1=−sin(x)cos(x)+(−sin(x))⋅1
使用加减运算法则+(−a)=−a=−sin(x)cos(x)−1⋅sin(x)
乘以:1⋅sin(x)=sin(x)=−sin(x)cos(x)−sin(x)
=sin(x)cos(x)+cos2(x)−sin(x)cos(x)−sin(x)
同类项相加:sin(x)cos(x)−sin(x)cos(x)=0=cos2(x)−sin(x)
=cos(x)cos2(x)−sin(x)
cos(x)cos2(x)−sin(x)=0
g(x)f(x)=0⇒f(x)=0cos2(x)−sin(x)=0
两边加上 sin(x)cos2(x)=sin(x)
两边进行平方(cos2(x))2=sin2(x)
两边减去 sin2(x)cos4(x)−sin2(x)=0
分解 cos4(x)−sin2(x):(cos2(x)+sin(x))(cos2(x)−sin(x))
cos4(x)−sin2(x)
使用指数法则: abc=(ab)ccos4(x)=(cos2(x))2=(cos2(x))2−sin2(x)
使用平方差公式: x2−y2=(x+y)(x−y)(cos2(x))2−sin2(x)=(cos2(x)+sin(x))(cos2(x)−sin(x))=(cos2(x)+sin(x))(cos2(x)−sin(x))
(cos2(x)+sin(x))(cos2(x)−sin(x))=0
分别求解每个部分cos2(x)+sin(x)=0orcos2(x)−sin(x)=0
cos2(x)+sin(x)=0:x=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn
cos2(x)+sin(x)=0
使用三角恒等式改写
cos2(x)+sin(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)+sin(x)
1+sin(x)−sin2(x)=0
用替代法求解
1+sin(x)−sin2(x)=0
令:sin(x)=u1+u−u2=0
1+u−u2=0:u=−2−1+5,u=21+5
1+u−u2=0
改写成标准形式 ax2+bx+c=0−u2+u+1=0
使用求根公式求解
−u2+u+1=0
二次方程求根公式:
若 a=−1,b=1,c=1u1,2=2(−1)−1±12−4(−1)⋅1
u1,2=2(−1)−1±12−4(−1)⋅1
12−4(−1)⋅1=5
12−4(−1)⋅1
使用法则 1a=112=1=1−4(−1)⋅1
使用法则 −(−a)=a=1+4⋅1⋅1
数字相乘:4⋅1⋅1=4=1+4
数字相加:1+4=5=5
u1,2=2(−1)−1±5
将解分隔开u1=2(−1)−1+5,u2=2(−1)−1−5
u=2(−1)−1+5:−2−1+5
2(−1)−1+5
去除括号: (−a)=−a=−2⋅1−1+5
数字相乘:2⋅1=2=−2−1+5
使用分式法则: −ba=−ba=−2−1+5
u=2(−1)−1−5:21+5
2(−1)−1−5
去除括号: (−a)=−a=−2⋅1−1−5
数字相乘:2⋅1=2=−2−1−5
使用分式法则: −b−a=ba−1−5=−(1+5)=21+5
二次方程组的解是:u=−2−1+5,u=21+5
u=sin(x)代回sin(x)=−2−1+5,sin(x)=21+5
sin(x)=−2−1+5,sin(x)=21+5
sin(x)=−2−1+5:x=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn
sin(x)=−2−1+5
使用反三角函数性质
sin(x)=−2−1+5
sin(x)=−2−1+5的通解sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn
x=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn
sin(x)=21+5:无解
sin(x)=21+5
−1≤sin(x)≤1无解
合并所有解x=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn
cos2(x)−sin(x)=0:x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
cos2(x)−sin(x)=0
使用三角恒等式改写
cos2(x)−sin(x)
使用毕达哥拉斯恒等式: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=1−sin2(x)−sin(x)
1−sin(x)−sin2(x)=0
用替代法求解
1−sin(x)−sin2(x)=0
令:sin(x)=u1−u−u2=0
1−u−u2=0:u=−21+5,u=25−1
1−u−u2=0
改写成标准形式 ax2+bx+c=0−u2−u+1=0
使用求根公式求解
−u2−u+1=0
二次方程求根公式:
若 a=−1,b=−1,c=1u1,2=2(−1)−(−1)±(−1)2−4(−1)⋅1
u1,2=2(−1)−(−1)±(−1)2−4(−1)⋅1
(−1)2−4(−1)⋅1=5
(−1)2−4(−1)⋅1
使用法则 −(−a)=a=(−1)2+4⋅1⋅1
(−1)2=1
(−1)2
使用指数法则: (−a)n=an,若 n 是偶数(−1)2=12=12
使用法则 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
数字相乘:4⋅1⋅1=4=4
=1+4
数字相加:1+4=5=5
u1,2=2(−1)−(−1)±5
将解分隔开u1=2(−1)−(−1)+5,u2=2(−1)−(−1)−5
u=2(−1)−(−1)+5:−21+5
2(−1)−(−1)+5
去除括号: (−a)=−a,−(−a)=a=−2⋅11+5
数字相乘:2⋅1=2=−21+5
使用分式法则: −ba=−ba=−21+5
u=2(−1)−(−1)−5:25−1
2(−1)−(−1)−5
去除括号: (−a)=−a,−(−a)=a=−2⋅11−5
数字相乘:2⋅1=2=−21−5
使用分式法则: −b−a=ba1−5=−(5−1)=25−1
二次方程组的解是:u=−21+5,u=25−1
u=sin(x)代回sin(x)=−21+5,sin(x)=25−1
sin(x)=−21+5,sin(x)=25−1
sin(x)=−21+5:无解
sin(x)=−21+5
−1≤sin(x)≤1无解
sin(x)=25−1:x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
sin(x)=25−1
使用反三角函数性质
sin(x)=25−1
sin(x)=25−1的通解sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
合并所有解x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
合并所有解x=arcsin(−2−1+5)+2πn,x=π+arcsin(2−1+5)+2πn,x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
将解代入原方程进行验证
将它们代入 cos(x)+1sin(x)+cos(x)=tan(x)检验解是否符合
去除与方程不符的解。
检验 arcsin(−2−1+5)+2πn的解:假
arcsin(−2−1+5)+2πn
代入 n=1arcsin(−2−1+5)+2π1
对于 cos(x)+1sin(x)+cos(x)=tan(x)代入x=arcsin(−2−1+5)+2π1cos(arcsin(−2−1+5)+2π1)+1sin(arcsin(−2−1+5)+2π1)+cos(arcsin(−2−1+5)+2π1)=tan(arcsin(−2−1+5)+2π1)
整理后得0.09412…=−0.78615…
⇒假
检验 π+arcsin(2−1+5)+2πn的解:假
π+arcsin(2−1+5)+2πn
代入 n=1π+arcsin(2−1+5)+2π1
对于 cos(x)+1sin(x)+cos(x)=tan(x)代入x=π+arcsin(2−1+5)+2π1cos(π+arcsin(2−1+5)+2π1)+1sin(π+arcsin(2−1+5)+2π1)+cos(π+arcsin(2−1+5)+2π1)=tan(π+arcsin(2−1+5)+2π1)
整理后得−6.56625…=0.78615…
⇒假
检验 arcsin(25−1)+2πn的解:真
arcsin(25−1)+2πn
代入 n=1arcsin(25−1)+2π1
对于 cos(x)+1sin(x)+cos(x)=tan(x)代入x=arcsin(25−1)+2π1cos(arcsin(25−1)+2π1)+1sin(arcsin(25−1)+2π1)+cos(arcsin(25−1)+2π1)=tan(arcsin(25−1)+2π1)
整理后得0.78615…=0.78615…
⇒真
检验 π−arcsin(25−1)+2πn的解:真
π−arcsin(25−1)+2πn
代入 n=1π−arcsin(25−1)+2π1
对于 cos(x)+1sin(x)+cos(x)=tan(x)代入x=π−arcsin(25−1)+2π1cos(π−arcsin(25−1)+2π1)+1sin(π−arcsin(25−1)+2π1)+cos(π−arcsin(25−1)+2π1)=tan(π−arcsin(25−1)+2π1)
整理后得−0.78615…=−0.78615…
⇒真
x=arcsin(25−1)+2πn,x=π−arcsin(25−1)+2πn
以小数形式表示解x=0.66623…+2πn,x=π−0.66623…+2πn