Soluções
Calculadora de integrais (antiderivadas)Calculadora de derivadasCalculadora de álgebraCalculadora de matrizesMais...
Gráficos
Gráfico de linhaGráfico exponencialGráfico QuadráticoGráfico de sinMais...
Calculadoras
Calculadora de IMCCalculadora de juros compostosCalculadora de porcentagemCalculadora de aceleraçãoMais...
Geometria
Calculadora do Teorema de PitágorasCalculadora de área de círculoCalculadora Triângulo IsóscelesCalculadora de TriângulosMais...
AI Chat
Ferramentas
CadernoGruposFolhas de "cola"Fichas de trabalhoPráticaVerificar
pt
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometria >

cos^4(x)=cos^{23}(x)

  • Pré-álgebra
  • Álgebra
  • Pré-cálculo
  • Cálculo
  • Funções
  • Álgebra Linear
  • Trigonometria
  • Estatística
  • Química
  • Conversões

Solução

cos4(x)=cos23(x)

Solução

x=2π​+2πn,x=23π​+2πn,x=2πn
+1
Graus
x=90∘+360∘n,x=270∘+360∘n,x=0∘+360∘n
Passos da solução
cos4(x)=cos23(x)
Usando o método de substituição
cos4(x)=cos23(x)
Sea: cos(x)=uu4=u23
u4=u23:u=0,u=1
u4=u23
Trocar ladosu23=u4
Mova u4para o lado esquerdo
u23=u4
Subtrair u4 de ambos os ladosu23−u4=u4−u4
Simplificaru23−u4=0
u23−u4=0
Fatorar u23−u4:u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u23−u4
Fatorar o termo comum u4:u4(u19−1)
u23−u4
Aplicar as propriedades dos expoentes: ab+c=abacu23=u19u4=u19u4−u4
Fatorar o termo comum u4=u4(u19−1)
=u4(u19−1)
Fatorar u19−1:(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u19−1
Reescrever 1 como 119=u19−119
Aplicar a regra de fatoração: xn−yn=(x−y)(xn−1+xn−2y+⋯+xyn−2yn−1)u19−119=(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)=(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
=u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
u4(u−1)(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)=0
Usando o princípio do fator zero: Se ab=0então a=0ou b=0u=0oru−1=0oru18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
Resolver u−1=0:u=1
u−1=0
Mova 1para o lado direito
u−1=0
Adicionar 1 a ambos os ladosu−1+1=0+1
Simplificaru=1
u=1
Resolver u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0:Sem solução para u∈R
u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
Encontrar uma solução para u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0 utilizando o método de Newton-Raphson:Sem solução para u∈R
u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1=0
Definição de método de Newton-Raphson
f(u)=u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1
Encontrar f′(u):18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1
dud​(u18+u17+u16+u15+u14+u13+u12+u11+u10+u9+u8+u7+u6+u5+u4+u3+u2+u+1)
Aplicar a regra da soma/diferença: (f±g)′=f′±g′=dud​(u18)+dud​(u17)+dud​(u16)+dud​(u15)+dud​(u14)+dud​(u13)+dud​(u12)+dud​(u11)+dud​(u10)+dud​(u9)+dud​(u8)+dud​(u7)+dud​(u6)+dud​(u5)+dud​(u4)+dud​(u3)+dud​(u2)+dudu​+dud​(1)
dud​(u18)=18u17
dud​(u18)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=18u18−1
Simplificar=18u17
dud​(u17)=17u16
dud​(u17)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=17u17−1
Simplificar=17u16
dud​(u16)=16u15
dud​(u16)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=16u16−1
Simplificar=16u15
dud​(u15)=15u14
dud​(u15)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=15u15−1
Simplificar=15u14
dud​(u14)=14u13
dud​(u14)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=14u14−1
Simplificar=14u13
dud​(u13)=13u12
dud​(u13)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=13u13−1
Simplificar=13u12
dud​(u12)=12u11
dud​(u12)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=12u12−1
Simplificar=12u11
dud​(u11)=11u10
dud​(u11)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=11u11−1
Simplificar=11u10
dud​(u10)=10u9
dud​(u10)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=10u10−1
Simplificar=10u9
dud​(u9)=9u8
dud​(u9)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=9u9−1
Simplificar=9u8
dud​(u8)=8u7
dud​(u8)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=8u8−1
Simplificar=8u7
dud​(u7)=7u6
dud​(u7)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=7u7−1
Simplificar=7u6
dud​(u6)=6u5
dud​(u6)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=6u6−1
Simplificar=6u5
dud​(u5)=5u4
dud​(u5)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=5u5−1
Simplificar=5u4
dud​(u4)=4u3
dud​(u4)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=4u4−1
Simplificar=4u3
dud​(u3)=3u2
dud​(u3)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=3u3−1
Simplificar=3u2
dud​(u2)=2u
dud​(u2)
Aplicar a regra da potência: dxd​(xa)=a⋅xa−1=2u2−1
Simplificar=2u
dudu​=1
dudu​
Aplicar a regra da derivação: dudu​=1=1
dud​(1)=0
dud​(1)
Derivada de uma constante: dxd​(a)=0=0
=18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1+0
Simplificar=18u17+17u16+16u15+15u14+14u13+13u12+12u11+11u10+10u9+9u8+8u7+7u6+6u5+5u4+4u3+3u2+2u+1
Seja u0​=−1Calcular un+1​ até que Δun+1​<0.000001
u1​=−0.88888…:Δu1​=0.11111…
f(u0​)=(−1)18+(−1)17+(−1)16+(−1)15+(−1)14+(−1)13+(−1)12+(−1)11+(−1)10+(−1)9+(−1)8+(−1)7+(−1)6+(−1)5+(−1)4+(−1)3+(−1)2+(−1)+1=1f′(u0​)=18(−1)17+17(−1)16+16(−1)15+15(−1)14+14(−1)13+13(−1)12+12(−1)11+11(−1)10+10(−1)9+9(−1)8+8(−1)7+7(−1)6+6(−1)5+5(−1)4+4(−1)3+3(−1)2+2(−1)+1=−9u1​=−0.88888…
Δu1​=∣−0.88888…−(−1)∣=0.11111…Δu1​=0.11111…
u2​=−0.23578…:Δu2​=0.65310…
f(u1​)=(−0.88888…)18+(−0.88888…)17+(−0.88888…)16+(−0.88888…)15+(−0.88888…)14+(−0.88888…)13+(−0.88888…)12+(−0.88888…)11+(−0.88888…)10+(−0.88888…)9+(−0.88888…)8+(−0.88888…)7+(−0.88888…)6+(−0.88888…)5+(−0.88888…)4+(−0.88888…)3+(−0.88888…)2+(−0.88888…)+1=0.58589…f′(u1​)=18(−0.88888…)17+17(−0.88888…)16+16(−0.88888…)15+15(−0.88888…)14+14(−0.88888…)13+13(−0.88888…)12+12(−0.88888…)11+11(−0.88888…)10+10(−0.88888…)9+9(−0.88888…)8+8(−0.88888…)7+7(−0.88888…)6+6(−0.88888…)5+5(−0.88888…)4+4(−0.88888…)3+3(−0.88888…)2+2(−0.88888…)+1=−0.89708…u2​=−0.23578…
Δu2​=∣−0.23578…−(−0.88888…)∣=0.65310…Δu2​=0.65310…
u3​=−1.47156…:Δu3​=1.23578…
f(u2​)=(−0.23578…)18+(−0.23578…)17+(−0.23578…)16+(−0.23578…)15+(−0.23578…)14+(−0.23578…)13+(−0.23578…)12+(−0.23578…)11+(−0.23578…)10+(−0.23578…)9+(−0.23578…)8+(−0.23578…)7+(−0.23578…)6+(−0.23578…)5+(−0.23578…)4+(−0.23578…)3+(−0.23578…)2+(−0.23578…)+1=0.80920…f′(u2​)=18(−0.23578…)17+17(−0.23578…)16+16(−0.23578…)15+15(−0.23578…)14+14(−0.23578…)13+13(−0.23578…)12+12(−0.23578…)11+11(−0.23578…)10+10(−0.23578…)9+9(−0.23578…)8+8(−0.23578…)7+7(−0.23578…)6+6(−0.23578…)5+5(−0.23578…)4+4(−0.23578…)3+3(−0.23578…)2+2(−0.23578…)+1=0.65481…u3​=−1.47156…
Δu3​=∣−1.47156…−(−0.23578…)∣=1.23578…Δu3​=1.23578…
u4​=−1.39155…:Δu4​=0.08000…
f(u3​)=(−1.47156…)18+(−1.47156…)17+(−1.47156…)16+(−1.47156…)15+(−1.47156…)14+(−1.47156…)13+(−1.47156…)12+(−1.47156…)11+(−1.47156…)10+(−1.47156…)9+(−1.47156…)8+(−1.47156…)7+(−1.47156…)6+(−1.47156…)5+(−1.47156…)4+(−1.47156…)3+(−1.47156…)2+(−1.47156…)+1=623.90302…f′(u3​)=18(−1.47156…)17+17(−1.47156…)16+16(−1.47156…)15+15(−1.47156…)14+14(−1.47156…)13+13(−1.47156…)12+12(−1.47156…)11+11(−1.47156…)10+10(−1.47156…)9+9(−1.47156…)8+8(−1.47156…)7+7(−1.47156…)6+6(−1.47156…)5+5(−1.47156…)4+4(−1.47156…)3+3(−1.47156…)2+2(−1.47156…)+1=−7797.82245…u4​=−1.39155…
Δu4​=∣−1.39155…−(−1.47156…)∣=0.08000…Δu4​=0.08000…
u5​=−1.31585…:Δu5​=0.07569…
f(u4​)=(−1.39155…)18+(−1.39155…)17+(−1.39155…)16+(−1.39155…)15+(−1.39155…)14+(−1.39155…)13+(−1.39155…)12+(−1.39155…)11+(−1.39155…)10+(−1.39155…)9+(−1.39155…)8+(−1.39155…)7+(−1.39155…)6+(−1.39155…)5+(−1.39155…)4+(−1.39155…)3+(−1.39155…)2+(−1.39155…)+1=223.17190…f′(u4​)=18(−1.39155…)17+17(−1.39155…)16+16(−1.39155…)15+15(−1.39155…)14+14(−1.39155…)13+13(−1.39155…)12+12(−1.39155…)11+11(−1.39155…)10+10(−1.39155…)9+9(−1.39155…)8+8(−1.39155…)7+7(−1.39155…)6+6(−1.39155…)5+5(−1.39155…)4+4(−1.39155…)3+3(−1.39155…)2+2(−1.39155…)+1=−2948.11712…u5​=−1.31585…
Δu5​=∣−1.31585…−(−1.39155…)∣=0.07569…Δu5​=0.07569…
u6​=−1.24406…:Δu6​=0.07179…
f(u5​)=(−1.31585…)18+(−1.31585…)17+(−1.31585…)16+(−1.31585…)15+(−1.31585…)14+(−1.31585…)13+(−1.31585…)12+(−1.31585…)11+(−1.31585…)10+(−1.31585…)9+(−1.31585…)8+(−1.31585…)7+(−1.31585…)6+(−1.31585…)5+(−1.31585…)4+(−1.31585…)3+(−1.31585…)2+(−1.31585…)+1=79.90865…f′(u5​)=18(−1.31585…)17+17(−1.31585…)16+16(−1.31585…)15+15(−1.31585…)14+14(−1.31585…)13+13(−1.31585…)12+12(−1.31585…)11+11(−1.31585…)10+10(−1.31585…)9+9(−1.31585…)8+8(−1.31585…)7+7(−1.31585…)6+6(−1.31585…)5+5(−1.31585…)4+4(−1.31585…)3+3(−1.31585…)2+2(−1.31585…)+1=−1113.08361…u6​=−1.24406…
Δu6​=∣−1.24406…−(−1.31585…)∣=0.07179…Δu6​=0.07179…
u7​=−1.17552…:Δu7​=0.06854…
f(u6​)=(−1.24406…)18+(−1.24406…)17+(−1.24406…)16+(−1.24406…)15+(−1.24406…)14+(−1.24406…)13+(−1.24406…)12+(−1.24406…)11+(−1.24406…)10+(−1.24406…)9+(−1.24406…)8+(−1.24406…)7+(−1.24406…)6+(−1.24406…)5+(−1.24406…)4+(−1.24406…)3+(−1.24406…)2+(−1.24406…)+1=28.69312…f′(u6​)=18(−1.24406…)17+17(−1.24406…)16+16(−1.24406…)15+15(−1.24406…)14+14(−1.24406…)13+13(−1.24406…)12+12(−1.24406…)11+11(−1.24406…)10+10(−1.24406…)9+9(−1.24406…)8+8(−1.24406…)7+7(−1.24406…)6+6(−1.24406…)5+5(−1.24406…)4+4(−1.24406…)3+3(−1.24406…)2+2(−1.24406…)+1=−418.62427…u7​=−1.17552…
Δu7​=∣−1.17552…−(−1.24406…)∣=0.06854…Δu7​=0.06854…
u8​=−1.10880…:Δu8​=0.06671…
f(u7​)=(−1.17552…)18+(−1.17552…)17+(−1.17552…)16+(−1.17552…)15+(−1.17552…)14+(−1.17552…)13+(−1.17552…)12+(−1.17552…)11+(−1.17552…)10+(−1.17552…)9+(−1.17552…)8+(−1.17552…)7+(−1.17552…)6+(−1.17552…)5+(−1.17552…)4+(−1.17552…)3+(−1.17552…)2+(−1.17552…)+1=10.38689…f′(u7​)=18(−1.17552…)17+17(−1.17552…)16+16(−1.17552…)15+15(−1.17552…)14+14(−1.17552…)13+13(−1.17552…)12+12(−1.17552…)11+11(−1.17552…)10+10(−1.17552…)9+9(−1.17552…)8+8(−1.17552…)7+7(−1.17552…)6+6(−1.17552…)5+5(−1.17552…)4+4(−1.17552…)3+3(−1.17552…)2+2(−1.17552…)+1=−155.67966…u8​=−1.10880…
Δu8​=∣−1.10880…−(−1.17552…)∣=0.06671…Δu8​=0.06671…
u9​=−1.04007…:Δu9​=0.06872…
f(u8​)=(−1.10880…)18+(−1.10880…)17+(−1.10880…)16+(−1.10880…)15+(−1.10880…)14+(−1.10880…)13+(−1.10880…)12+(−1.10880…)11+(−1.10880…)10+(−1.10880…)9+(−1.10880…)8+(−1.10880…)7+(−1.10880…)6+(−1.10880…)5+(−1.10880…)4+(−1.10880…)3+(−1.10880…)2+(−1.10880…)+1=3.84863…f′(u8​)=18(−1.10880…)17+17(−1.10880…)16+16(−1.10880…)15+15(−1.10880…)14+14(−1.10880…)13+13(−1.10880…)12+12(−1.10880…)11+11(−1.10880…)10+10(−1.10880…)9+9(−1.10880…)8+8(−1.10880…)7+7(−1.10880…)6+6(−1.10880…)5+5(−1.10880…)4+4(−1.10880…)3+3(−1.10880…)2+2(−1.10880…)+1=−55.99781…u9​=−1.04007…
Δu9​=∣−1.04007…−(−1.10880…)∣=0.06872…Δu9​=0.06872…
u10​=−0.95606…:Δu10​=0.08401…
f(u9​)=(−1.04007…)18+(−1.04007…)17+(−1.04007…)16+(−1.04007…)15+(−1.04007…)14+(−1.04007…)13+(−1.04007…)12+(−1.04007…)11+(−1.04007…)10+(−1.04007…)9+(−1.04007…)8+(−1.04007…)7+(−1.04007…)6+(−1.04007…)5+(−1.04007…)4+(−1.04007…)3+(−1.04007…)2+(−1.04007…)+1=1.52432…f′(u9​)=18(−1.04007…)17+17(−1.04007…)16+16(−1.04007…)15+15(−1.04007…)14+14(−1.04007…)13+13(−1.04007…)12+12(−1.04007…)11+11(−1.04007…)10+10(−1.04007…)9+9(−1.04007…)8+8(−1.04007…)7+7(−1.04007…)6+6(−1.04007…)5+5(−1.04007…)4+4(−1.04007…)3+3(−1.04007…)2+2(−1.04007…)+1=−18.14456…u10​=−0.95606…
Δu10​=∣−0.95606…−(−1.04007…)∣=0.08401…Δu10​=0.08401…
Não se pode encontrar solução
A solução éSemsoluc\c​a~oparau∈R
As soluções sãou=0,u=1
Substituir na equação u=cos(x)cos(x)=0,cos(x)=1
cos(x)=0,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Soluções gerais para cos(x)=0
cos(x) tabela de periodicidade com ciclo de 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=1:x=2πn
cos(x)=1
Soluções gerais para cos(x)=1
cos(x) tabela de periodicidade com ciclo de 2πn:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Resolver x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Combinar toda as soluçõesx=2π​+2πn,x=23π​+2πn,x=2πn

Gráfico

Sorry, your browser does not support this application
Visualizar gráfico interativo 

Exemplos populares

cos^4(x)+2cos^2(x)=1cos4(x)+2cos2(x)=1cos^2(x)+sin^2(x)=cos^5(x)cos2(x)+sin2(x)=cos5(x)sin(x-45^5)=((sqrt(2)))/2sin(x−455)=2(2​)​(sin(x)-sqrt(3)*cos(x))/2 =02sin(x)−3​⋅cos(x)​=0cos(1/(3x))= 1/3cos(3x1​)=31​
Ferramentas de estudoSolucionador de matemática de IAAI ChatFichas de trabalhoPráticaFolhas de "cola"CalculadorasCalculadora gráficaCalculadora de GeometriaVerifique a solução
AplicativosAplicativo Simbolab (Android)Calculadora gráfica (Android)Prática (Android)Aplicativo Simbolab (iOS)Calculadora gráfica (iOS)Prática (iOS)Extensão do Chrome
EmpresaSobre SimbolabBlogAjuda
JurídicoPrivacidadeService TermsPolítica de CookiesConfigurações de cookiesNão venda ou compartilhe minhas informações pessoaisDireitos autorais, diretrizes da comunidade, DSA e outros recursos legaisCentro Jurídico Learneo
Mídia social
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024