Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

(sin^{22}(a))/(sin^2(a))=4-4sin^2(a)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

sin2(a)sin22(a)​=4−4sin2(a)

Solución

a=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn
+1
Grados
a=72.18663…∘+360∘n,a=107.81336…∘+360∘n,a=−72.18663…∘+360∘n,a=252.18663…∘+360∘n
Pasos de solución
sin2(a)sin22(a)​=4−4sin2(a)
Usando el método de sustitución
sin2(a)sin22(a)​=4−4sin2(a)
Sea: sin(a)=uu2u22​=4−4u2
u2u22​=4−4u2:u=0.90641…​,u=−0.90641…​
u2u22​=4−4u2
Simplificar u2u22​:u20
u2u22​
Aplicar las leyes de los exponentes: xbxa​=xa−bu2u22​=u22−2=u22−2
Restar: 22−2=20=u20
u20=4−4u2
Resolver u20=4−4u2:u=0.90641…​,u=−0.90641…​
u20=4−4u2
Desplace 4u2a la izquierda
u20=4−4u2
Sumar 4u2 a ambos ladosu20+4u2=4−4u2+4u2
Simplificaru20+4u2=4
u20+4u2=4
Desplace 4a la izquierda
u20+4u2=4
Restar 4 de ambos ladosu20+4u2−4=4−4
Simplificaru20+4u2−4=0
u20+4u2−4=0
Re-escribir la ecuación con v=u2 y v10=u20v10+4v−4=0
Resolver v10+4v−4=0:v≈0.90641…,v≈−1.24548…
v10+4v−4=0
Encontrar una solución para v10+4v−4=0 utilizando el método de Newton-Raphson:v≈0.90641…
v10+4v−4=0
Definición del método de Newton-Raphson
f(v)=v10+4v−4
Hallar f′(v):10v9+4
dvd​(v10+4v−4)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dvd​(v10)+dvd​(4v)−dvd​(4)
dvd​(v10)=10v9
dvd​(v10)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=10v10−1
Simplificar=10v9
dvd​(4v)=4
dvd​(4v)
Sacar la constante: (a⋅f)′=a⋅f′=4dvdv​
Aplicar la regla de derivación: dvdv​=1=4⋅1
Simplificar=4
dvd​(4)=0
dvd​(4)
Derivada de una constante: dxd​(a)=0=0
=10v9+4−0
Simplificar=10v9+4
Sea v0​=1Calcular vn+1​ hasta que Δvn+1​<0.000001
v1​=0.92857…:Δv1​=0.07142…
f(v0​)=110+4⋅1−4=1f′(v0​)=10⋅19+4=14v1​=0.92857…
Δv1​=∣0.92857…−1∣=0.07142…Δv1​=0.07142…
v2​=0.90766…:Δv2​=0.02090…
f(v1​)=0.92857…10+4⋅0.92857…−4=0.19088…f′(v1​)=10⋅0.92857…9+4=9.13260…v2​=0.90766…
Δv2​=∣0.90766…−0.92857…∣=0.02090…Δv2​=0.02090…
v3​=0.90641…:Δv3​=0.00125…
f(v2​)=0.90766…10+4⋅0.90766…−4=0.01023…f′(v2​)=10⋅0.90766…9+4=8.18168…v3​=0.90641…
Δv3​=∣0.90641…−0.90766…∣=0.00125…Δv3​=0.00125…
v4​=0.90641…:Δv4​=3.97918E−6
f(v3​)=0.90641…10+4⋅0.90641…−4=0.00003…f′(v3​)=10⋅0.90641…9+4=8.13008…v4​=0.90641…
Δv4​=∣0.90641…−0.90641…∣=3.97918E−6Δv4​=3.97918E−6
v5​=0.90641…:Δv5​=3.99335E−11
f(v4​)=0.90641…10+4⋅0.90641…−4=3.24656E−10f′(v4​)=10⋅0.90641…9+4=8.12992…v5​=0.90641…
Δv5​=∣0.90641…−0.90641…∣=3.99335E−11Δv5​=3.99335E−11
v≈0.90641…
Aplicar la división larga Equation0:v−0.90641…v10+4v−4​=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…≈0
Encontrar una solución para v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0 utilizando el método de Newton-Raphson:v≈−1.24548…
v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…=0
Definición del método de Newton-Raphson
f(v)=v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…
Hallar f′(v):9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
dvd​(v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dvd​(v9)+dvd​(0.90641…v8)+dvd​(0.82158…v7)+dvd​(0.74469…v6)+dvd​(0.67500…v5)+dvd​(0.61183…v4)+dvd​(0.55457…v3)+dvd​(0.50267…v2)+dvd​(0.45563…v)+dvd​(4.41299…)
dvd​(v9)=9v8
dvd​(v9)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=9v9−1
Simplificar=9v8
dvd​(0.90641…v8)=7.25131…v7
dvd​(0.90641…v8)
Sacar la constante: (a⋅f)′=a⋅f′=0.90641…dvd​(v8)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.90641…⋅8v8−1
Simplificar=7.25131…v7
dvd​(0.82158…v7)=5.75111…v6
dvd​(0.82158…v7)
Sacar la constante: (a⋅f)′=a⋅f′=0.82158…dvd​(v7)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.82158…⋅7v7−1
Simplificar=5.75111…v6
dvd​(0.74469…v6)=4.46819…v5
dvd​(0.74469…v6)
Sacar la constante: (a⋅f)′=a⋅f′=0.74469…dvd​(v6)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.74469…⋅6v6−1
Simplificar=4.46819…v5
dvd​(0.67500…v5)=3.37502…v4
dvd​(0.67500…v5)
Sacar la constante: (a⋅f)′=a⋅f′=0.67500…dvd​(v5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.67500…⋅5v5−1
Simplificar=3.37502…v4
dvd​(0.61183…v4)=2.44733…v3
dvd​(0.61183…v4)
Sacar la constante: (a⋅f)′=a⋅f′=0.61183…dvd​(v4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.61183…⋅4v4−1
Simplificar=2.44733…v3
dvd​(0.55457…v3)=1.66372…v2
dvd​(0.55457…v3)
Sacar la constante: (a⋅f)′=a⋅f′=0.55457…dvd​(v3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.55457…⋅3v3−1
Simplificar=1.66372…v2
dvd​(0.50267…v2)=1.00535…v
dvd​(0.50267…v2)
Sacar la constante: (a⋅f)′=a⋅f′=0.50267…dvd​(v2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.50267…⋅2v2−1
Simplificar=1.00535…v
dvd​(0.45563…v)=0.45563…
dvd​(0.45563…v)
Sacar la constante: (a⋅f)′=a⋅f′=0.45563…dvdv​
Aplicar la regla de derivación: dvdv​=1=0.45563…⋅1
Simplificar=0.45563…
dvd​(4.41299…)=0
dvd​(4.41299…)
Derivada de una constante: dxd​(a)=0=0
=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…+0
Simplificar=9v8+7.25131…v7+5.75111…v6+4.46819…v5+3.37502…v4+2.44733…v3+1.66372…v2+1.00535…v+0.45563…
Sea v0​=−5Calcular vn+1​ hasta que Δvn+1​<0.000001
v1​=−4.45375…:Δv1​=0.54624…
f(v0​)=(−5)9+0.90641…(−5)8+0.82158…(−5)7+0.74469…(−5)6+0.67500…(−5)5+0.61183…(−5)4+0.55457…(−5)3+0.50267…(−5)2+0.45563…(−5)+4.41299…=−1653389.03665…f′(v0​)=9(−5)8+7.25131…(−5)7+5.75111…(−5)6+4.46819…(−5)5+3.37502…(−5)4+2.44733…(−5)3+1.66372…(−5)2+1.00535…(−5)+0.45563…=3026854.43549…v1​=−4.45375…
Δv1​=∣−4.45375…−(−5)∣=0.54624…Δv1​=0.54624…
v2​=−3.96802…:Δv2​=0.48573…
f(v1​)=(−4.45375…)9+0.90641…(−4.45375…)8+0.82158…(−4.45375…)7+0.74469…(−4.45375…)6+0.67500…(−4.45375…)5+0.61183…(−4.45375…)4+0.55457…(−4.45375…)3+0.50267…(−4.45375…)2+0.45563…(−4.45375…)+4.41299…=−572909.56059…f′(v1​)=9(−4.45375…)8+7.25131…(−4.45375…)7+5.75111…(−4.45375…)6+4.46819…(−4.45375…)5+3.37502…(−4.45375…)4+2.44733…(−4.45375…)3+1.66372…(−4.45375…)2+1.00535…(−4.45375…)+0.45563…=1179476.08686…v2​=−3.96802…
Δv2​=∣−3.96802…−(−4.45375…)∣=0.48573…Δv2​=0.48573…
v3​=−3.53606…:Δv3​=0.43195…
f(v2​)=(−3.96802…)9+0.90641…(−3.96802…)8+0.82158…(−3.96802…)7+0.74469…(−3.96802…)6+0.67500…(−3.96802…)5+0.61183…(−3.96802…)4+0.55457…(−3.96802…)3+0.50267…(−3.96802…)2+0.45563…(−3.96802…)+4.41299…=−198524.05883…f′(v2​)=9(−3.96802…)8+7.25131…(−3.96802…)7+5.75111…(−3.96802…)6+4.46819…(−3.96802…)5+3.37502…(−3.96802…)4+2.44733…(−3.96802…)3+1.66372…(−3.96802…)2+1.00535…(−3.96802…)+0.45563…=459591.06090…v3​=−3.53606…
Δv3​=∣−3.53606…−(−3.96802…)∣=0.43195…Δv3​=0.43195…
v4​=−3.15190…:Δv4​=0.38416…
f(v3​)=(−3.53606…)9+0.90641…(−3.53606…)8+0.82158…(−3.53606…)7+0.74469…(−3.53606…)6+0.67500…(−3.53606…)5+0.61183…(−3.53606…)4+0.55457…(−3.53606…)3+0.50267…(−3.53606…)2+0.45563…(−3.53606…)+4.41299…=−68794.93716…f′(v3​)=9(−3.53606…)8+7.25131…(−3.53606…)7+5.75111…(−3.53606…)6+4.46819…(−3.53606…)5+3.37502…(−3.53606…)4+2.44733…(−3.53606…)3+1.66372…(−3.53606…)2+1.00535…(−3.53606…)+0.45563…=179076.94254…v4​=−3.15190…
Δv4​=∣−3.15190…−(−3.53606…)∣=0.38416…Δv4​=0.38416…
v5​=−2.81023…:Δv5​=0.34167…
f(v4​)=(−3.15190…)9+0.90641…(−3.15190…)8+0.82158…(−3.15190…)7+0.74469…(−3.15190…)6+0.67500…(−3.15190…)5+0.61183…(−3.15190…)4+0.55457…(−3.15190…)3+0.50267…(−3.15190…)2+0.45563…(−3.15190…)+4.41299…=−23840.26765…f′(v4​)=9(−3.15190…)8+7.25131…(−3.15190…)7+5.75111…(−3.15190…)6+4.46819…(−3.15190…)5+3.37502…(−3.15190…)4+2.44733…(−3.15190…)3+1.66372…(−3.15190…)2+1.00535…(−3.15190…)+0.45563…=69775.21311…v5​=−2.81023…
Δv5​=∣−2.81023…−(−3.15190…)∣=0.34167…Δv5​=0.34167…
v6​=−2.50637…:Δv6​=0.30385…
f(v5​)=(−2.81023…)9+0.90641…(−2.81023…)8+0.82158…(−2.81023…)7+0.74469…(−2.81023…)6+0.67500…(−2.81023…)5+0.61183…(−2.81023…)4+0.55457…(−2.81023…)3+0.50267…(−2.81023…)2+0.45563…(−2.81023…)+4.41299…=−8261.45550…f′(v5​)=9(−2.81023…)8+7.25131…(−2.81023…)7+5.75111…(−2.81023…)6+4.46819…(−2.81023…)5+3.37502…(−2.81023…)4+2.44733…(−2.81023…)3+1.66372…(−2.81023…)2+1.00535…(−2.81023…)+0.45563…=27188.45003…v6​=−2.50637…
Δv6​=∣−2.50637…−(−2.81023…)∣=0.30385…Δv6​=0.30385…
v7​=−2.23625…:Δv7​=0.27011…
f(v6​)=(−2.50637…)9+0.90641…(−2.50637…)8+0.82158…(−2.50637…)7+0.74469…(−2.50637…)6+0.67500…(−2.50637…)5+0.61183…(−2.50637…)4+0.55457…(−2.50637…)3+0.50267…(−2.50637…)2+0.45563…(−2.50637…)+4.41299…=−2862.37457…f′(v6​)=9(−2.50637…)8+7.25131…(−2.50637…)7+5.75111…(−2.50637…)6+4.46819…(−2.50637…)5+3.37502…(−2.50637…)4+2.44733…(−2.50637…)3+1.66372…(−2.50637…)2+1.00535…(−2.50637…)+0.45563…=10596.88514…v7​=−2.23625…
Δv7​=∣−2.23625…−(−2.50637…)∣=0.27011…Δv7​=0.27011…
v8​=−1.99650…:Δv8​=0.23975…
f(v7​)=(−2.23625…)9+0.90641…(−2.23625…)8+0.82158…(−2.23625…)7+0.74469…(−2.23625…)6+0.67500…(−2.23625…)5+0.61183…(−2.23625…)4+0.55457…(−2.23625…)3+0.50267…(−2.23625…)2+0.45563…(−2.23625…)+4.41299…=−991.10859…f′(v7​)=9(−2.23625…)8+7.25131…(−2.23625…)7+5.75111…(−2.23625…)6+4.46819…(−2.23625…)5+3.37502…(−2.23625…)4+2.44733…(−2.23625…)3+1.66372…(−2.23625…)2+1.00535…(−2.23625…)+0.45563…=4133.76874…v8​=−1.99650…
Δv8​=∣−1.99650…−(−2.23625…)∣=0.23975…Δv8​=0.23975…
v9​=−1.78466…:Δv9​=0.21183…
f(v8​)=(−1.99650…)9+0.90641…(−1.99650…)8+0.82158…(−1.99650…)7+0.74469…(−1.99650…)6+0.67500…(−1.99650…)5+0.61183…(−1.99650…)4+0.55457…(−1.99650…)3+0.50267…(−1.99650…)2+0.45563…(−1.99650…)+4.41299…=−342.49576…f′(v8​)=9(−1.99650…)8+7.25131…(−1.99650…)7+5.75111…(−1.99650…)6+4.46819…(−1.99650…)5+3.37502…(−1.99650…)4+2.44733…(−1.99650…)3+1.66372…(−1.99650…)2+1.00535…(−1.99650…)+0.45563…=1616.80028…v9​=−1.78466…
Δv9​=∣−1.78466…−(−1.99650…)∣=0.21183…Δv9​=0.21183…
v10​=−1.60003…:Δv10​=0.18463…
f(v9​)=(−1.78466…)9+0.90641…(−1.78466…)8+0.82158…(−1.78466…)7+0.74469…(−1.78466…)6+0.67500…(−1.78466…)5+0.61183…(−1.78466…)4+0.55457…(−1.78466…)3+0.50267…(−1.78466…)2+0.45563…(−1.78466…)+4.41299…=−117.65885…f′(v9​)=9(−1.78466…)8+7.25131…(−1.78466…)7+5.75111…(−1.78466…)6+4.46819…(−1.78466…)5+3.37502…(−1.78466…)4+2.44733…(−1.78466…)3+1.66372…(−1.78466…)2+1.00535…(−1.78466…)+0.45563…=637.26147…v10​=−1.60003…
Δv10​=∣−1.60003…−(−1.78466…)∣=0.18463…Δv10​=0.18463…
v11​=−1.44531…:Δv11​=0.15471…
f(v10​)=(−1.60003…)9+0.90641…(−1.60003…)8+0.82158…(−1.60003…)7+0.74469…(−1.60003…)6+0.67500…(−1.60003…)5+0.61183…(−1.60003…)4+0.55457…(−1.60003…)3+0.50267…(−1.60003…)2+0.45563…(−1.60003…)+4.41299…=−39.72697…f′(v10​)=9(−1.60003…)8+7.25131…(−1.60003…)7+5.75111…(−1.60003…)6+4.46819…(−1.60003…)5+3.37502…(−1.60003…)4+2.44733…(−1.60003…)3+1.66372…(−1.60003…)2+1.00535…(−1.60003…)+0.45563…=256.77560…v11​=−1.44531…
Δv11​=∣−1.44531…−(−1.60003…)∣=0.15471…Δv11​=0.15471…
v12​=−1.32926…:Δv12​=0.11605…
f(v11​)=(−1.44531…)9+0.90641…(−1.44531…)8+0.82158…(−1.44531…)7+0.74469…(−1.44531…)6+0.67500…(−1.44531…)5+0.61183…(−1.44531…)4+0.55457…(−1.44531…)3+0.50267…(−1.44531…)2+0.45563…(−1.44531…)+4.41299…=−12.75482…f′(v11​)=9(−1.44531…)8+7.25131…(−1.44531…)7+5.75111…(−1.44531…)6+4.46819…(−1.44531…)5+3.37502…(−1.44531…)4+2.44733…(−1.44531…)3+1.66372…(−1.44531…)2+1.00535…(−1.44531…)+0.45563…=109.90167…v12​=−1.32926…
Δv12​=∣−1.32926…−(−1.44531…)∣=0.11605…Δv12​=0.11605…
v13​=−1.26447…:Δv13​=0.06478…
f(v12​)=(−1.32926…)9+0.90641…(−1.32926…)8+0.82158…(−1.32926…)7+0.74469…(−1.32926…)6+0.67500…(−1.32926…)5+0.61183…(−1.32926…)4+0.55457…(−1.32926…)3+0.50267…(−1.32926…)2+0.45563…(−1.32926…)+4.41299…=−3.53618…f′(v12​)=9(−1.32926…)8+7.25131…(−1.32926…)7+5.75111…(−1.32926…)6+4.46819…(−1.32926…)5+3.37502…(−1.32926…)4+2.44733…(−1.32926…)3+1.66372…(−1.32926…)2+1.00535…(−1.32926…)+0.45563…=54.58328…v13​=−1.26447…
Δv13​=∣−1.26447…−(−1.32926…)∣=0.06478…Δv13​=0.06478…
v14​=−1.24663…:Δv14​=0.01784…
f(v13​)=(−1.26447…)9+0.90641…(−1.26447…)8+0.82158…(−1.26447…)7+0.74469…(−1.26447…)6+0.67500…(−1.26447…)5+0.61183…(−1.26447…)4+0.55457…(−1.26447…)3+0.50267…(−1.26447…)2+0.45563…(−1.26447…)+4.41299…=−0.64115…f′(v13​)=9(−1.26447…)8+7.25131…(−1.26447…)7+5.75111…(−1.26447…)6+4.46819…(−1.26447…)5+3.37502…(−1.26447…)4+2.44733…(−1.26447…)3+1.66372…(−1.26447…)2+1.00535…(−1.26447…)+0.45563…=35.92993…v14​=−1.24663…
Δv14​=∣−1.24663…−(−1.26447…)∣=0.01784…Δv14​=0.01784…
v15​=−1.24548…:Δv15​=0.00114…
f(v14​)=(−1.24663…)9+0.90641…(−1.24663…)8+0.82158…(−1.24663…)7+0.74469…(−1.24663…)6+0.67500…(−1.24663…)5+0.61183…(−1.24663…)4+0.55457…(−1.24663…)3+0.50267…(−1.24663…)2+0.45563…(−1.24663…)+4.41299…=−0.03658…f′(v14​)=9(−1.24663…)8+7.25131…(−1.24663…)7+5.75111…(−1.24663…)6+4.46819…(−1.24663…)5+3.37502…(−1.24663…)4+2.44733…(−1.24663…)3+1.66372…(−1.24663…)2+1.00535…(−1.24663…)+0.45563…=31.89979…v15​=−1.24548…
Δv15​=∣−1.24548…−(−1.24663…)∣=0.00114…Δv15​=0.00114…
v16​=−1.24548…:Δv16​=4.44027E−6
f(v15​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−0.00014…f′(v15​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65496…v16​=−1.24548…
Δv16​=∣−1.24548…−(−1.24548…)∣=4.44027E−6Δv16​=4.44027E−6
v17​=−1.24548…:Δv17​=6.62571E−11
f(v16​)=(−1.24548…)9+0.90641…(−1.24548…)8+0.82158…(−1.24548…)7+0.74469…(−1.24548…)6+0.67500…(−1.24548…)5+0.61183…(−1.24548…)4+0.55457…(−1.24548…)3+0.50267…(−1.24548…)2+0.45563…(−1.24548…)+4.41299…=−2.0973E−9f′(v16​)=9(−1.24548…)8+7.25131…(−1.24548…)7+5.75111…(−1.24548…)6+4.46819…(−1.24548…)5+3.37502…(−1.24548…)4+2.44733…(−1.24548…)3+1.66372…(−1.24548…)2+1.00535…(−1.24548…)+0.45563…=31.65401…v17​=−1.24548…
Δv17​=∣−1.24548…−(−1.24548…)∣=6.62571E−11Δv17​=6.62571E−11
v≈−1.24548…
Aplicar la división larga Equation0:v+1.24548…v9+0.90641…v8+0.82158…v7+0.74469…v6+0.67500…v5+0.61183…v4+0.55457…v3+0.50267…v2+0.45563…v+4.41299…​=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…≈0
Encontrar una solución para v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0 utilizando el método de Newton-Raphson:Sin solución para v∈R
v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…=0
Definición del método de Newton-Raphson
f(v)=v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…
Hallar f′(v):8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
dvd​(v8−0.33906…v7+1.24388…v6−0.80453…v5+1.67704…v4−1.47688…v3+2.39401…v2−2.47902…v+3.54320…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dvd​(v8)−dvd​(0.33906…v7)+dvd​(1.24388…v6)−dvd​(0.80453…v5)+dvd​(1.67704…v4)−dvd​(1.47688…v3)+dvd​(2.39401…v2)−dvd​(2.47902…v)+dvd​(3.54320…)
dvd​(v8)=8v7
dvd​(v8)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=8v8−1
Simplificar=8v7
dvd​(0.33906…v7)=2.37346…v6
dvd​(0.33906…v7)
Sacar la constante: (a⋅f)′=a⋅f′=0.33906…dvd​(v7)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.33906…⋅7v7−1
Simplificar=2.37346…v6
dvd​(1.24388…v6)=7.46332…v5
dvd​(1.24388…v6)
Sacar la constante: (a⋅f)′=a⋅f′=1.24388…dvd​(v6)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=1.24388…⋅6v6−1
Simplificar=7.46332…v5
dvd​(0.80453…v5)=4.02269…v4
dvd​(0.80453…v5)
Sacar la constante: (a⋅f)′=a⋅f′=0.80453…dvd​(v5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.80453…⋅5v5−1
Simplificar=4.02269…v4
dvd​(1.67704…v4)=6.70817…v3
dvd​(1.67704…v4)
Sacar la constante: (a⋅f)′=a⋅f′=1.67704…dvd​(v4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=1.67704…⋅4v4−1
Simplificar=6.70817…v3
dvd​(1.47688…v3)=4.43066…v2
dvd​(1.47688…v3)
Sacar la constante: (a⋅f)′=a⋅f′=1.47688…dvd​(v3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=1.47688…⋅3v3−1
Simplificar=4.43066…v2
dvd​(2.39401…v2)=4.78802…v
dvd​(2.39401…v2)
Sacar la constante: (a⋅f)′=a⋅f′=2.39401…dvd​(v2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2.39401…⋅2v2−1
Simplificar=4.78802…v
dvd​(2.47902…v)=2.47902…
dvd​(2.47902…v)
Sacar la constante: (a⋅f)′=a⋅f′=2.47902…dvdv​
Aplicar la regla de derivación: dvdv​=1=2.47902…⋅1
Simplificar=2.47902…
dvd​(3.54320…)=0
dvd​(3.54320…)
Derivada de una constante: dxd​(a)=0=0
=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…+0
Simplificar=8v7−2.37346…v6+7.46332…v5−4.02269…v4+6.70817…v3−4.43066…v2+4.78802…v−2.47902…
Sea v0​=1Calcular vn+1​ hasta que Δvn+1​<0.000001
v1​=0.65147…:Δv1​=0.34852…
f(v0​)=18−0.33906…⋅17+1.24388…⋅16−0.80453…⋅15+1.67704…⋅14−1.47688…⋅13+2.39401…⋅12−2.47902…⋅1+3.54320…=4.75863…f′(v0​)=8⋅17−2.37346…⋅16+7.46332…⋅15−4.02269…⋅14+6.70817…⋅13−4.43066…⋅12+4.78802…⋅1−2.47902…=13.65367…v1​=0.65147…
Δv1​=∣0.65147…−1∣=0.34852…Δv1​=0.34852…
v2​=−2.25263…:Δv2​=2.90411…
f(v1​)=0.65147…8−0.33906…⋅0.65147…7+1.24388…⋅0.65147…6−0.80453…⋅0.65147…5+1.67704…⋅0.65147…4−1.47688…⋅0.65147…3+2.39401…⋅0.65147…2−2.47902…⋅0.65147…+3.54320…=2.85422…f′(v1​)=8⋅0.65147…7−2.37346…⋅0.65147…6+7.46332…⋅0.65147…5−4.02269…⋅0.65147…4+6.70817…⋅0.65147…3−4.43066…⋅0.65147…2+4.78802…⋅0.65147…−2.47902…=0.98282…v2​=−2.25263…
Δv2​=∣−2.25263…−0.65147…∣=2.90411…Δv2​=2.90411…
v3​=−1.93475…:Δv3​=0.31788…
f(v2​)=(−2.25263…)8−0.33906…(−2.25263…)7+1.24388…(−2.25263…)6−0.80453…(−2.25263…)5+1.67704…(−2.25263…)4−1.47688…(−2.25263…)3+2.39401…(−2.25263…)2−2.47902…(−2.25263…)+3.54320…=1053.34912…f′(v2​)=8(−2.25263…)7−2.37346…(−2.25263…)6+7.46332…(−2.25263…)5−4.02269…(−2.25263…)4+6.70817…(−2.25263…)3−4.43066…(−2.25263…)2+4.78802…(−2.25263…)−2.47902…=−3313.66679…v3​=−1.93475…
Δv3​=∣−1.93475…−(−2.25263…)∣=0.31788…Δv3​=0.31788…
v4​=−1.64441…:Δv4​=0.29034…
f(v3​)=(−1.93475…)8−0.33906…(−1.93475…)7+1.24388…(−1.93475…)6−0.80453…(−1.93475…)5+1.67704…(−1.93475…)4−1.47688…(−1.93475…)3+2.39401…(−1.93475…)2−2.47902…(−1.93475…)+3.54320…=369.29768…f′(v3​)=8(−1.93475…)7−2.37346…(−1.93475…)6+7.46332…(−1.93475…)5−4.02269…(−1.93475…)4+6.70817…(−1.93475…)3−4.43066…(−1.93475…)2+4.78802…(−1.93475…)−2.47902…=−1271.93873…v4​=−1.64441…
Δv4​=∣−1.64441…−(−1.93475…)∣=0.29034…Δv4​=0.29034…
v5​=−1.36913…:Δv5​=0.27528…
f(v4​)=(−1.64441…)8−0.33906…(−1.64441…)7+1.24388…(−1.64441…)6−0.80453…(−1.64441…)5+1.67704…(−1.64441…)4−1.47688…(−1.64441…)3+2.39401…(−1.64441…)2−2.47902…(−1.64441…)+3.54320…=131.68340…f′(v4​)=8(−1.64441…)7−2.37346…(−1.64441…)6+7.46332…(−1.64441…)5−4.02269…(−1.64441…)4+6.70817…(−1.64441…)3−4.43066…(−1.64441…)2+4.78802…(−1.64441…)−2.47902…=−478.36033…v5​=−1.36913…
Δv5​=∣−1.36913…−(−1.64441…)∣=0.27528…Δv5​=0.27528…
v6​=−1.08732…:Δv6​=0.28180…
f(v5​)=(−1.36913…)8−0.33906…(−1.36913…)7+1.24388…(−1.36913…)6−0.80453…(−1.36913…)5+1.67704…(−1.36913…)4−1.47688…(−1.36913…)3+2.39401…(−1.36913…)2−2.47902…(−1.36913…)+3.54320…=48.57656…f′(v5​)=8(−1.36913…)7−2.37346…(−1.36913…)6+7.46332…(−1.36913…)5−4.02269…(−1.36913…)4+6.70817…(−1.36913…)3−4.43066…(−1.36913…)2+4.78802…(−1.36913…)−2.47902…=−172.37459…v6​=−1.08732…
Δv6​=∣−1.08732…−(−1.36913…)∣=0.28180…Δv6​=0.28180…
v7​=−0.75017…:Δv7​=0.33714…
f(v6​)=(−1.08732…)8−0.33906…(−1.08732…)7+1.24388…(−1.08732…)6−0.80453…(−1.08732…)5+1.67704…(−1.08732…)4−1.47688…(−1.08732…)3+2.39401…(−1.08732…)2−2.47902…(−1.08732…)+3.54320…=19.15306…f′(v6​)=8(−1.08732…)7−2.37346…(−1.08732…)6+7.46332…(−1.08732…)5−4.02269…(−1.08732…)4+6.70817…(−1.08732…)3−4.43066…(−1.08732…)2+4.78802…(−1.08732…)−2.47902…=−56.80952…v7​=−0.75017…
Δv7​=∣−0.75017…−(−1.08732…)∣=0.33714…Δv7​=0.33714…
v8​=−0.21910…:Δv8​=0.53107…
f(v7​)=(−0.75017…)8−0.33906…(−0.75017…)7+1.24388…(−0.75017…)6−0.80453…(−0.75017…)5+1.67704…(−0.75017…)4−1.47688…(−0.75017…)3+2.39401…(−0.75017…)2−2.47902…(−0.75017…)+3.54320…=8.46330…f′(v7​)=8(−0.75017…)7−2.37346…(−0.75017…)6+7.46332…(−0.75017…)5−4.02269…(−0.75017…)4+6.70817…(−0.75017…)3−4.43066…(−0.75017…)2+4.78802…(−0.75017…)−2.47902…=−15.93620…v8​=−0.21910…
Δv8​=∣−0.21910…−(−0.75017…)∣=0.53107…Δv8​=0.53107…
No se puede encontrar solución
Las soluciones sonv≈0.90641…,v≈−1.24548…
v≈0.90641…,v≈−1.24548…
Sustituir hacia atrás la v=u2,resolver para u
Resolver u2=0.90641…:u=0.90641…​,u=−0.90641…​
u2=0.90641…
Para x2=f(a) las soluciones son x=f(a)​,−f(a)​
u=0.90641…​,u=−0.90641…​
Resolver u2=−1.24548…:Sin solución para u∈R
u2=−1.24548…
x2 no puede ser negativo para x∈RSinsolucioˊnparau∈R
Las soluciones son
u=0.90641…​,u=−0.90641…​
u=0.90641…​,u=−0.90641…​
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):u=0
Tomar el(los) denominador(es) de u2u22​ y comparar con cero
Resolver u2=0:u=0
u2=0
Aplicar la regla xn=0⇒x=0
u=0
Los siguientes puntos no están definidosu=0
Combinar los puntos no definidos con las soluciones:
u=0.90641…​,u=−0.90641…​
Sustituir en la ecuación u=sin(a)sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​,sin(a)=−0.90641…​
sin(a)=0.90641…​:a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=0.90641…​
Aplicar propiedades trigonométricas inversas
sin(a)=0.90641…​
Soluciones generales para sin(a)=0.90641…​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πna=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
a=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​:a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
sin(a)=−0.90641…​
Aplicar propiedades trigonométricas inversas
sin(a)=−0.90641…​
Soluciones generales para sin(a)=−0.90641…​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πna=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Combinar toda las solucionesa=arcsin(0.90641…​)+2πn,a=π−arcsin(0.90641…​)+2πn,a=arcsin(−0.90641…​)+2πn,a=π+arcsin(0.90641…​)+2πn
Mostrar soluciones en forma decimala=1.25989…+2πn,a=π−1.25989…+2πn,a=−1.25989…+2πn,a=π+1.25989…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

tan^3(x)=2sin^3(x)=3sin(x)cos^4(x)+2sin^2(x)+6cos^2(x)+5=01+sin(2a)=sin^2(a)((cos^3(a)))/((2cos^2(a)-1))=cos(a)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024