Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

tan^4(x)+tan^2(x)=tan(x)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

tan4(x)+tan2(x)=tan(x)

Solución

x=πn,x=0.59876…+πn
+1
Grados
x=0∘+180∘n,x=34.30680…∘+180∘n
Pasos de solución
tan4(x)+tan2(x)=tan(x)
Usando el método de sustitución
tan4(x)+tan2(x)=tan(x)
Sea: tan(x)=uu4+u2=u
u4+u2=u:u=0,u≈0.68232…
u4+u2=u
Desplace ua la izquierda
u4+u2=u
Restar u de ambos ladosu4+u2−u=u−u
Simplificaru4+u2−u=0
u4+u2−u=0
Factorizar u4+u2−u:u(u3+u−1)
u4+u2−u
Aplicar las leyes de los exponentes: ab+c=abacu2=uu=u3u+uu−u
Factorizar el termino común u=u(u3+u−1)
u(u3+u−1)=0
Usando la propiedad del factor cero: Si ab=0entonces a=0o b=0u=0oru3+u−1=0
Resolver u3+u−1=0:u≈0.68232…
u3+u−1=0
Encontrar una solución para u3+u−1=0 utilizando el método de Newton-Raphson:u≈0.68232…
u3+u−1=0
Definición del método de Newton-Raphson
f(u)=u3+u−1
Hallar f′(u):3u2+1
dud​(u3+u−1)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(u3)+dudu​−dud​(1)
dud​(u3)=3u2
dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=3u3−1
Simplificar=3u2
dudu​=1
dudu​
Aplicar la regla de derivación: dudu​=1=1
dud​(1)=0
dud​(1)
Derivada de una constante: dxd​(a)=0=0
=3u2+1−0
Simplificar=3u2+1
Sea u0​=1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=0.75:Δu1​=0.25
f(u0​)=13+1−1=1f′(u0​)=3⋅12+1=4u1​=0.75
Δu1​=∣0.75−1∣=0.25Δu1​=0.25
u2​=0.68604…:Δu2​=0.06395…
f(u1​)=0.753+0.75−1=0.171875f′(u1​)=3⋅0.752+1=2.6875u2​=0.68604…
Δu2​=∣0.68604…−0.75∣=0.06395…Δu2​=0.06395…
u3​=0.68233…:Δu3​=0.00370…
f(u2​)=0.68604…3+0.68604…−1=0.00894…f′(u2​)=3⋅0.68604…2+1=2.41197…u3​=0.68233…
Δu3​=∣0.68233…−0.68604…∣=0.00370…Δu3​=0.00370…
u4​=0.68232…:Δu4​=0.00001…
f(u3​)=0.68233…3+0.68233…−1=0.00002…f′(u3​)=3⋅0.68233…2+1=2.39676…u4​=0.68232…
Δu4​=∣0.68232…−0.68233…∣=0.00001…Δu4​=0.00001…
u5​=0.68232…:Δu5​=1.18493E−10
f(u4​)=0.68232…3+0.68232…−1=2.83995E−10f′(u4​)=3⋅0.68232…2+1=2.39671…u5​=0.68232…
Δu5​=∣0.68232…−0.68232…∣=1.18493E−10Δu5​=1.18493E−10
u≈0.68232…
Aplicar la división larga Equation0:u−0.68232…u3+u−1​=u2+0.68232…u+1.46557…
u2+0.68232…u+1.46557…≈0
Encontrar una solución para u2+0.68232…u+1.46557…=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
u2+0.68232…u+1.46557…=0
Definición del método de Newton-Raphson
f(u)=u2+0.68232…u+1.46557…
Hallar f′(u):2u+0.68232…
dud​(u2+0.68232…u+1.46557…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(u2)+dud​(0.68232…u)+dud​(1.46557…)
dud​(u2)=2u
dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2u2−1
Simplificar=2u
dud​(0.68232…u)=0.68232…
dud​(0.68232…u)
Sacar la constante: (a⋅f)′=a⋅f′=0.68232…dudu​
Aplicar la regla de derivación: dudu​=1=0.68232…⋅1
Simplificar=0.68232…
dud​(1.46557…)=0
dud​(1.46557…)
Derivada de una constante: dxd​(a)=0=0
=2u+0.68232…+0
Simplificar=2u+0.68232…
Sea u0​=−2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.76391…:Δu1​=1.23608…
f(u0​)=(−2)2+0.68232…(−2)+1.46557…=4.10091…f′(u0​)=2(−2)+0.68232…=−3.31767…u1​=−0.76391…
Δu1​=∣−0.76391…−(−2)∣=1.23608…Δu1​=1.23608…
u2​=1.04316…:Δu2​=1.80707…
f(u1​)=(−0.76391…)2+0.68232…(−0.76391…)+1.46557…=1.52789…f′(u1​)=2(−0.76391…)+0.68232…=−0.84550…u2​=1.04316…
Δu2​=∣1.04316…−(−0.76391…)∣=1.80707…Δu2​=1.80707…
u3​=−0.13630…:Δu3​=1.17946…
f(u2​)=1.04316…2+0.68232…⋅1.04316…+1.46557…=3.26553…f′(u2​)=2⋅1.04316…+0.68232…=2.76865…u3​=−0.13630…
Δu3​=∣−0.13630…−1.04316…∣=1.17946…Δu3​=1.17946…
u4​=−3.53171…:Δu4​=3.39540…
f(u3​)=(−0.13630…)2+0.68232…(−0.13630…)+1.46557…=1.39114…f′(u3​)=2(−0.13630…)+0.68232…=0.40971…u4​=−3.53171…
Δu4​=∣−3.53171…−(−0.13630…)∣=3.39540…Δu4​=3.39540…
u5​=−1.72500…:Δu5​=1.80670…
f(u4​)=(−3.53171…)2+0.68232…(−3.53171…)+1.46557…=11.52876…f′(u4​)=2(−3.53171…)+0.68232…=−6.38109…u5​=−1.72500…
Δu5​=∣−1.72500…−(−3.53171…)∣=1.80670…Δu5​=1.80670…
u6​=−0.54560…:Δu6​=1.17939…
f(u5​)=(−1.72500…)2+0.68232…(−1.72500…)+1.46557…=3.26419…f′(u5​)=2(−1.72500…)+0.68232…=−2.76767…u6​=−0.54560…
Δu6​=∣−0.54560…−(−1.72500…)∣=1.17939…Δu6​=1.17939…
u7​=2.85625…:Δu7​=3.40185…
f(u6​)=(−0.54560…)2+0.68232…(−0.54560…)+1.46557…=1.39097…f′(u6​)=2(−0.54560…)+0.68232…=−0.40888…u7​=2.85625…
Δu7​=∣2.85625…−(−0.54560…)∣=3.40185…Δu7​=3.40185…
u8​=1.04656…:Δu8​=1.80968…
f(u7​)=2.85625…2+0.68232…⋅2.85625…+1.46557…=11.57264…f′(u7​)=2⋅2.85625…+0.68232…=6.39483…u8​=1.04656…
Δu8​=∣1.04656…−2.85625…∣=1.80968…Δu8​=1.80968…
u9​=−0.13340…:Δu9​=1.17997…
f(u8​)=1.04656…2+0.68232…⋅1.04656…+1.46557…=3.27496…f′(u8​)=2⋅1.04656…+0.68232…=2.77545…u9​=−0.13340…
Δu9​=∣−0.13340…−1.04656…∣=1.17997…Δu9​=1.17997…
u10​=−3.48434…:Δu10​=3.35093…
f(u9​)=(−0.13340…)2+0.68232…(−0.13340…)+1.46557…=1.39234…f′(u9​)=2(−0.13340…)+0.68232…=0.41550…u10​=−3.48434…
Δu10​=∣−3.48434…−(−0.13340…)∣=3.35093…Δu10​=3.35093…
No se puede encontrar solución
La solución esu≈0.68232…
Las soluciones sonu=0,u≈0.68232…
Sustituir en la ecuación u=tan(x)tan(x)=0,tan(x)≈0.68232…
tan(x)=0,tan(x)≈0.68232…
tan(x)=0:x=πn
tan(x)=0
Soluciones generales para tan(x)=0
tan(x) tabla de valores periódicos con πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Resolver x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
tan(x)=0.68232…:x=arctan(0.68232…)+πn
tan(x)=0.68232…
Aplicar propiedades trigonométricas inversas
tan(x)=0.68232…
Soluciones generales para tan(x)=0.68232…tan(x)=a⇒x=arctan(a)+πnx=arctan(0.68232…)+πn
x=arctan(0.68232…)+πn
Combinar toda las solucionesx=πn,x=arctan(0.68232…)+πn
Mostrar soluciones en forma decimalx=πn,x=0.59876…+πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

sin^4(x)+sin^2(x)=sin^6(x)cos(a)=(-11)/(14)solvefor x,sin(x/x)=0.75cos^2(x)+sin^2(x)=4cos(u)-1.5sin^2(u)+0.1667=0
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024