Puedes ver tu cupón en la
página de usuario
Ir a QuillBot
Actualizar a Pro
Continuar al sitio
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluciones
Calculadora de integrales (antiderivadas)
Calculadora de derivadas
Calculadora de Álgebra
Calculadora de matrices
Más...
Gráficos
Gráfica de línea
Gráfica exponencial
Gráfica cuadrática
Gráfica de seno
Más...
Calculadoras
Calculadora de IMC
Calculadora de interés compuesto
Calculadora de porcentaje
Calculadora de aceleración
Más...
Geometría
Calculadora del teorema de pitágoras
Calculadora del área del círculo
Calculadora de triángulo isósceles
Calculadora de Triángulos
Más...
Herramientas
Cuaderno
Grupos
Hojas de referencia
Hojas de trabajo
Guías de estudio
Practica
Verificar solución
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Actualizar
×
Symbolab para Chrome
Recorta y resuelve en cualquier sitio web
Añadir a Chrome
Problemas populares
Temas
Pre-Álgebra
Álgebra
Problemas de texto
Functions & Graphing
Geometría
Trigonometría
Precálculo
Cálculo
Estadística
Problemas populares Cálculo
derivative (16x)/(x^2+16)
derivative\:\frac{16x}{x^{2}+16}
derivative 7x^2e^x
derivative\:7x^{2}e^{x}
tangent f(x)=-4(2x+7)^{-5}(2),\at x=2
tangent\:f(x)=-4(2x+7)^{-5}(2),\at\:x=2
integral de 1/(xsqrt(4x+9))
\int\:\frac{1}{x\sqrt{4x+9}}dx
derivative cos^5(x)
derivative\:\cos^{5}(x)
límite cuando x tiende a 0 de (sqrt(x)-1)/(\sqrt[3]{x)-1}
\lim\:_{x\to\:0}(\frac{\sqrt{x}-1}{\sqrt[3]{x}-1})
derivada de 7/3 x^3-2x^2+10
\frac{d}{dx}(\frac{7}{3}x^{3}-2x^{2}+10)
integral de (12x+30)/((x^2+2x-8))
\int\:\frac{12x+30}{(x^{2}+2x-8)}dx
(\partial)/(\partial y)(x^3+3x^2y-y^4)
\frac{\partial\:}{\partial\:y}(x^{3}+3x^{2}y-y^{4})
y^{''}-0.2y^'+0.01y=0,y(0)=15,y^'(0)=b
y^{\prime\:\prime\:}-0.2y^{\prime\:}+0.01y=0,y(0)=15,y^{\prime\:}(0)=b
xdy-(2x+1)e^{-y}dx=0
xdy-(2x+1)e^{-y}dx=0
integral de 1/((3x-1))
\int\:\frac{1}{(3x-1)}dx
(\partial)/(\partial x)(2cos(3x))
\frac{\partial\:}{\partial\:x}(2\cos(3x))
(dy)/(dx)+y^5x+4y=0
\frac{dy}{dx}+y^{5}x+4y=0
integral de 0 a 2 de x^2e^{-x}
\int\:_{0}^{2}x^{2}e^{-x}dx
integral de-2^x
\int\:-2^{x}dx
desarrollar (x^3+1)(x^2+x+1)
expand\:(x^{3}+1)(x^{2}+x+1)
derivada de 5/(3x^2)
\frac{d}{dx}(\frac{5}{3x^{2}})
límite cuando x tiende a 0+de (tan(4x))^x
\lim\:_{x\to\:0+}((\tan(4x))^{x})
derivative (x^2+2x-4)/((x+1)^2)
derivative\:\frac{x^{2}+2x-4}{(x+1)^{2}}
integral de-x^7*e^{x^8-7}-2x
\int\:-x^{7}\cdot\:e^{x^{8}-7}-2xdx
integral de 14xe^{7x}
\int\:14xe^{7x}dx
límite cuando x tiende a 3 de | 3/(x^2-9)|
\lim\:_{x\to\:3}(\left|\frac{3}{x^{2}-9}\right|)
f(θ)=4tan(θ)
f(θ)=4\tan(θ)
derivada de 2cos(x-cos(2x))
\frac{d}{dx}(2\cos(x)-\cos(2x))
y*ln(x)*(dy}{dx}=(\frac{y+1)/x)^2
y\cdot\:\ln(x)\cdot\:\frac{dy}{dx}=(\frac{y+1}{x})^{2}
tangent y=7x+9cos(x),(0,9)
tangent\:y=7x+9\cos(x),(0,9)
integral de (x+7)/(x^2+4)
\int\:\frac{x+7}{x^{2}+4}dx
(\partial)/(\partial t)(stu^2)
\frac{\partial\:}{\partial\:t}(stu^{2})
derivada de x/(x+8)
\frac{d}{dx}(\frac{x}{x+8})
integral de (ln(x))/(xsqrt(1+ln(x^2)))
\int\:\frac{\ln(x)}{x\sqrt{1+\ln(x^{2})}}dx
derivative y=ln(xsqrt(x^2-1))
derivative\:y=\ln(x\sqrt{x^{2}-1})
(dy)/(dx)=2y-4
\frac{dy}{dx}=2y-4
derivada de 8x^3-8
\frac{d}{dx}(8x^{3}-8)
derivative 5cot(x)
derivative\:5\cot(x)
límite cuando x tiende a-2 de 3x^4
\lim\:_{x\to\:-2}(3x^{4})
laplacetransform 2(1-e^{-2t})
laplacetransform\:2(1-e^{-2t})
derivative log_{e}(log_{e}(x))
derivative\:\log_{e}(\log_{e}(x))
tangent f(x)=x^4+5x^2-x,\at x=1
tangent\:f(x)=x^{4}+5x^{2}-x,\at\:x=1
derivada de (1-4x/(1+4x))
\frac{d}{dx}(\frac{1-4x}{1+4x})
integral de ln(cos(x))*tan(x)
\int\:\ln(\cos(x))\cdot\:\tan(x)dx
derivada de 4/x-x(x+1)
\frac{d}{dx}(\frac{4}{x}-x(x+1))
serie de n=0 a infinity de (-8/9)^n
\sum\:_{n=0}^{\infty\:}(-\frac{8}{9})^{n}
x^'=kx(t)
x^{\prime\:}=kx(t)
integral de sqrt(x^2+2x-3)
\int\:\sqrt{x^{2}+2x-3}dx
límite cuando x tiende a-2 de x^2+3
\lim\:_{x\to\:-2}(x^{2}+3)
tangent f(x)=-2cos(x),\at x= pi/4
tangent\:f(x)=-2\cos(x),\at\:x=\frac{π}{4}
derivada de e^x+xe^x-1
\frac{d}{dx}(e^{x}+xe^{x}-1)
ydx-(2y^4+2x)dy=0
ydx-(2y^{4}+2x)dy=0
pendiente x^4-8x^2+2
slope\:x^{4}-8x^{2}+2
límite cuando x tiende a infinity de ln(8)
\lim\:_{x\to\:\infty\:}(\ln(8))
límite cuando x tiende a 1 de-(x^2-1)/(x-1)
\lim\:_{x\to\:1}(-\frac{x^{2}-1}{x-1})
integral de 1/(xsqrt(4x^4-1))
\int\:\frac{1}{x\sqrt{4x^{4}-1}}dx
integral de-2 a 1 de (-x^2-x+2)
\int\:_{-2}^{1}(-x^{2}-x+2)dx
integral de 3sqrt(25-x)
\int\:3\sqrt{25-x}dx
integral de-2 a 0 de (7x^2+7x)
\int\:_{-2}^{0}(7x^{2}+7x)dx
integral de 2sin(t)
\int\:2\sin(t)dt
límite cuando h tiende a 0 de ((x+h)^{2/3}-(x^{2/3}))/h
\lim\:_{h\to\:0}(\frac{(x+h)^{\frac{2}{3}}-(x^{\frac{2}{3}})}{h})
integral de b a 2b de x^5
\int\:_{b}^{2b}x^{5}dx
integral de ((x^2+1)/(sqrt(x)))
\int\:(\frac{x^{2}+1}{\sqrt{x}})dx
x^2y^{''}-7xy^'+16y=0
x^{2}y^{\prime\:\prime\:}-7xy^{\prime\:}+16y=0
área y=-3x^3+x^2+10x,x>= 0
area\:y=-3x^{3}+x^{2}+10x,x\ge\:0
y^{''}-2y^'-3y=xe^x
y^{\prime\:\prime\:}-2y^{\prime\:}-3y=xe^{x}
derivative e^{4/5 x}
derivative\:e^{\frac{4}{5}x}
derivada de sqrt(x+1)-2
\frac{d}{dx}(\sqrt{x+1}-2)
derivada de (e^{4x^{2+1}}/8)
\frac{d}{dx}(\frac{e^{4x^{2+1}}}{8})
derivada de {f}(x(x)^{-1})
\frac{d}{dx}({f}(x)(x)^{-1})
(x(dy)/(dx)+y)(2(x+xy))=xy
(x\frac{dy}{dx}+y)(2(x+xy))=xy
(xy^')/(y-2)=y^2-y
\frac{xy^{\prime\:}}{y-2}=y^{2}-y
tangent f(x)=(-6x)/(x^2+1),(1,-3)
tangent\:f(x)=\frac{-6x}{x^{2}+1},(1,-3)
área y=-x^2+16,y=-1/4 x-1,4(y+2.3)=2.3x
area\:y=-x^{2}+16,y=-\frac{1}{4}x-1,4(y+2.3)=2.3x
integral de (22x^2)/(x^4-61x^2+900)
\int\:\frac{22x^{2}}{x^{4}-61x^{2}+900}dx
límite cuando x tiende a 7 de (7-x)/(7-x)
\lim\:_{x\to\:7}(\frac{7-x}{7-x})
límite cuando x tiende a 6 de-110
\lim\:_{x\to\:6}(-110)
integral de (x^4)/(x^5-4)
\int\:\frac{x^{4}}{x^{5}-4}dx
derivada de 4/3 pi*x^3
\frac{d}{dx}(\frac{4}{3}π\cdot\:x^{3})
integral de-1 a 9 de (9-x^2+8x)
\int\:_{-1}^{9}(9-x^{2}+8x)dx
integral de x/(sqrt(49+x^4))
\int\:\frac{x}{\sqrt{49+x^{4}}}dx
derivative 2/t-4/(t^2)
derivative\:\frac{2}{t}-\frac{4}{t^{2}}
integral de 0 a 5 de 40e^{-0.3t}
\int\:_{0}^{5}40e^{-0.3t}dt
y^'=7xe^y,y(0)=0
y^{\prime\:}=7xe^{y},y(0)=0
límite cuando x tiende a 0 de (a^x-1)/(2x)
\lim\:_{x\to\:0}(\frac{a^{x}-1}{2x})
límite cuando x tiende a-infinity de 4x^3
\lim\:_{x\to\:-\infty\:}(4x^{3})
límite cuando x tiende a 0 de 8/(x+2)
\lim\:_{x\to\:0}(\frac{8}{x+2})
(\partial)/(\partial x)(sqrt(x^2+y^2+2))
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}+y^{2}+2})
derivative 1/(sqrt(b-mt))
derivative\:\frac{1}{\sqrt{b-mt}}
serie de n=5 a infinity de cos(1/(n^3))
\sum\:_{n=5}^{\infty\:}\cos(\frac{1}{n^{3}})
partialfraction (x^2)/(x^2-1)
partialfraction\:\frac{x^{2}}{x^{2}-1}
derivative f(x)=(375)/(x^4)
derivative\:f(x)=\frac{375}{x^{4}}
derivada de 10sqrt(x+5)
\frac{d}{dx}(10\sqrt{x+5})
integral de 3x^2e^{-x^3}
\int\:3x^{2}e^{-x^{3}}dx
derivada de x^2+4x+7
\frac{d}{dx}(x^{2}+4x+7)
derivada de \sqrt[3]{x^2+6}
\frac{d}{dx}(\sqrt[3]{x^{2}+6})
derivada de 2ysin(x-x^3+ln(y))
\frac{d}{dx}(2y\sin(x)-x^{3}+\ln(y))
integral de-1 a 1 de e^{-x}
\int\:_{-1}^{1}e^{-x}dx
tangent 5/(sqrt(x)),\at m
tangent\:\frac{5}{\sqrt{x}},\at\:m
serie de n=0 a infinity de (((-1)^n)/(2^n))x^{2n}
\sum\:_{n=0}^{\infty\:}(\frac{(-1)^{n}}{2^{n}})x^{2n}
(dy)/(dx)=x(x-2)
\frac{dy}{dx}=x(x-2)
derivative ln(\sqrt[6]{x})
derivative\:\ln(\sqrt[6]{x})
(x+y+4dx)+(2x+2y+1dy)=0
(x+y+4dx)+(2x+2y+1dy)=0
1
..
989
990
991
992
993
..
1823