Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

4sin^3(x)+2sin^2(x)-2sin(x)-1=0

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

4sin3(x)+2sin2(x)−2sin(x)−1=0

Lösung

x=67π​+2πn,x=611π​+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn
+1
Grad
x=210∘+360∘n,x=330∘+360∘n,x=225∘+360∘n,x=315∘+360∘n,x=45∘+360∘n,x=135∘+360∘n
Schritte zur Lösung
4sin3(x)+2sin2(x)−2sin(x)−1=0
Löse mit Substitution
4sin3(x)+2sin2(x)−2sin(x)−1=0
Angenommen: sin(x)=u4u3+2u2−2u−1=0
4u3+2u2−2u−1=0:u=−21​,u=−22​​,u=22​​
4u3+2u2−2u−1=0
Faktorisiere 4u3+2u2−2u−1:(2u+1)(2​u+1)(2​u−1)
4u3+2u2−2u−1
=(4u3+2u2)+(−2u−1)
Klammere −1 aus −2u−1aus:−(2u+1)
−2u−1
Klammere gleiche Terme aus −1=−(2u+1)
Klammere 2u2 aus 4u3+2u2aus:2u2(2u+1)
4u3+2u2
Wende Exponentenregel an: ab+c=abacu3=uu2=4uu2+2u2
Schreibe 4um: 2⋅2=2⋅2uu2+2u2
Klammere gleiche Terme aus 2u2=2u2(2u+1)
=−(2u+1)+2u2(2u+1)
Klammere gleiche Terme aus 2u+1=(2u+1)(2u2−1)
Faktorisiere 2u2−1:(2​u+1)(2​u−1)
2u2−1
Schreibe 2u2−1um: (2​u)2−12
2u2−1
Wende Radikal Regel an: a=(a​)22=(2​)2=(2​)2u2−1
Schreibe 1um: 12=(2​)2u2−12
Wende Exponentenregel an: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Wende Formel zur Differenz von zwei Quadraten an:x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=(2u+1)(2​u+1)(2​u−1)
(2u+1)(2​u+1)(2​u−1)=0
Anwendung des Nullfaktorprinzips: Wenn ab=0dann a=0oder b=02u+1=0or2​u+1=0or2​u−1=0
Löse 2u+1=0:u=−21​
2u+1=0
Verschiebe 1auf die rechte Seite
2u+1=0
Subtrahiere 1 von beiden Seiten2u+1−1=0−1
Vereinfache2u=−1
2u=−1
Teile beide Seiten durch 2
2u=−1
Teile beide Seiten durch 222u​=2−1​
Vereinfacheu=−21​
u=−21​
Löse 2​u+1=0:u=−22​​
2​u+1=0
Verschiebe 1auf die rechte Seite
2​u+1=0
Subtrahiere 1 von beiden Seiten2​u+1−1=0−1
Vereinfache2​u=−1
2​u=−1
Teile beide Seiten durch 2​
2​u=−1
Teile beide Seiten durch 2​2​2​u​=2​−1​
Vereinfache
2​2​u​=2​−1​
Vereinfache 2​2​u​:u
2​2​u​
Streiche die gemeinsamen Faktoren: 2​=u
Vereinfache 2​−1​:−22​​
2​−1​
Wende Bruchregel an: b−a​=−ba​=−2​1​
Rationalisiere −2​1​:−22​​
−2​1​
Multipliziere mit dem Konjugat 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Wende Radikal Regel an: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
Löse 2​u−1=0:u=22​​
2​u−1=0
Verschiebe 1auf die rechte Seite
2​u−1=0
Füge 1 zu beiden Seiten hinzu2​u−1+1=0+1
Vereinfache2​u=1
2​u=1
Teile beide Seiten durch 2​
2​u=1
Teile beide Seiten durch 2​2​2​u​=2​1​
Vereinfache
2​2​u​=2​1​
Vereinfache 2​2​u​:u
2​2​u​
Streiche die gemeinsamen Faktoren: 2​=u
Vereinfache 2​1​:22​​
2​1​
Multipliziere mit dem Konjugat 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Wende Radikal Regel an: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
Die Lösungen sindu=−21​,u=−22​​,u=22​​
Setze in u=sin(x)einsin(x)=−21​,sin(x)=−22​​,sin(x)=22​​
sin(x)=−21​,sin(x)=−22​​,sin(x)=22​​
sin(x)=−21​:x=67π​+2πn,x=611π​+2πn
sin(x)=−21​
Allgemeine Lösung für sin(x)=−21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
sin(x)=−22​​:x=45π​+2πn,x=47π​+2πn
sin(x)=−22​​
Allgemeine Lösung für sin(x)=−22​​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
sin(x)=22​​:x=4π​+2πn,x=43π​+2πn
sin(x)=22​​
Allgemeine Lösung für sin(x)=22​​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Kombiniere alle Lösungenx=67π​+2πn,x=611π​+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

3tan^2(θ)=7sec(θ)-53tan2(θ)=7sec(θ)−5sin(x^2+1)-cos(x^2+1)=0sin(x2+1)−cos(x2+1)=0sin(8x)=0sin(8x)=0sin(θ/2)=(sqrt(2))/2sin(2θ​)=22​​9tan(3x)=99tan(3x)=9
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024