解题
积分(反导数)计算器导数计算器代数计算器矩阵计算器更多的...
图表
线图指数图二次图正弦图更多的...
计算器
体质指数计算器复利计算器百分比计算器加速度计算器更多的...
几何
勾股定理计算器圆形面积计算器等腰三角形计算器三角形计算器更多的...
工具
笔记簿小组主题工作表练习验证
zs
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
受欢迎的 三角函数 >

3tan^2(θ)+1= 2/(tan^2(θ))

  • 初等代数
  • 代数
  • 微积分入门
  • 微积分
  • 函数
  • 线性代数
  • 三角
  • 统计
  • 化学

解答

3tan2(θ)+1=tan2(θ)2​

解答

θ=0.68471…+πn,θ=−0.68471…+πn
+1
度数
θ=39.23152…∘+180∘n,θ=−39.23152…∘+180∘n
求解步骤
3tan2(θ)+1=tan2(θ)2​
用替代法求解
3tan2(θ)+1=tan2(θ)2​
令:tan(θ)=u3u2+1=u22​
3u2+1=u22​:u=32​​,u=−32​​,u=i,u=−i
3u2+1=u22​
在两边乘以 u2
3u2+1=u22​
在两边乘以 u23u2u2+1⋅u2=u22​u2
化简 3u2u2:3u4
3u2u2+1⋅u2=u22​u2
使用指数法则: ab⋅ac=ab+cu2u2=u2+2=3u2+2
数字相加:2+2=4=3u4
3u4+u2=2
3u4+u2=2
解 3u4+u2=2:u=32​​,u=−32​​,u=i,u=−i
3u4+u2=2
将 2para o lado esquerdo
3u4+u2=2
两边减去 23u4+u2−2=2−2
化简3u4+u2−2=0
3u4+u2−2=0
用v=u2 和 v2=u4改写方程式3v2+v−2=0
解 3v2+v−2=0:v=32​,v=−1
3v2+v−2=0
使用求根公式求解
3v2+v−2=0
二次方程求根公式:
若 a=3,b=1,c=−2v1,2​=2⋅3−1±12−4⋅3(−2)​​
v1,2​=2⋅3−1±12−4⋅3(−2)​​
12−4⋅3(−2)​=5
12−4⋅3(−2)​
使用法则 1a=112=1=1−4⋅3(−2)​
使用法则 −(−a)=a=1+4⋅3⋅2​
数字相乘:4⋅3⋅2=24=1+24​
数字相加:1+24=25=25​
因式分解数字: 25=52=52​
使用根式运算法则: 52​=5=5
v1,2​=2⋅3−1±5​
将解分隔开v1​=2⋅3−1+5​,v2​=2⋅3−1−5​
v=2⋅3−1+5​:32​
2⋅3−1+5​
数字相加/相减:−1+5=4=2⋅34​
数字相乘:2⋅3=6=64​
约分:2=32​
v=2⋅3−1−5​:−1
2⋅3−1−5​
数字相减:−1−5=−6=2⋅3−6​
数字相乘:2⋅3=6=6−6​
使用分式法则: b−a​=−ba​=−66​
使用法则 aa​=1=−1
二次方程组的解是:v=32​,v=−1
v=32​,v=−1
代回 v=u2,求解 u
解 u2=32​:u=32​​,u=−32​​
u2=32​
对于 x2=f(a) 解为 x=f(a)​,−f(a)​
u=32​​,u=−32​​
解 u2=−1:u=i,u=−i
u2=−1
对于 x2=f(a) 解为 x=f(a)​,−f(a)​
u=−1​,u=−−1​
化简 −1​:i
−1​
使用虚数运算法则: −1​=i=i
化简 −−1​:−i
−−1​
使用虚数运算法则: −1​=i=−i
u=i,u=−i
解为
u=32​​,u=−32​​,u=i,u=−i
u=32​​,u=−32​​,u=i,u=−i
验证解
找到无定义的点(奇点):u=0
取 u22​ 的分母,令其等于零
解 u2=0:u=0
u2=0
使用法则 xn=0⇒x=0
u=0
以下点无定义u=0
将不在定义域的点与解相综合:
u=32​​,u=−32​​,u=i,u=−i
u=tan(θ)代回tan(θ)=32​​,tan(θ)=−32​​,tan(θ)=i,tan(θ)=−i
tan(θ)=32​​,tan(θ)=−32​​,tan(θ)=i,tan(θ)=−i
tan(θ)=32​​:θ=arctan(32​​)+πn
tan(θ)=32​​
使用反三角函数性质
tan(θ)=32​​
tan(θ)=32​​的通解tan(x)=a⇒x=arctan(a)+πnθ=arctan(32​​)+πn
θ=arctan(32​​)+πn
tan(θ)=−32​​:θ=arctan(−32​​)+πn
tan(θ)=−32​​
使用反三角函数性质
tan(θ)=−32​​
tan(θ)=−32​​的通解tan(x)=−a⇒x=arctan(−a)+πnθ=arctan(−32​​)+πn
θ=arctan(−32​​)+πn
tan(θ)=i:无解
tan(θ)=i
无解
tan(θ)=−i:无解
tan(θ)=−i
无解
合并所有解θ=arctan(32​​)+πn,θ=arctan(−32​​)+πn
以小数形式表示解θ=0.68471…+πn,θ=−0.68471…+πn

作图

Sorry, your browser does not support this application
查看交互式图形

流行的例子

4tan(x)=2sec^2(x)sin(x)+cos(x)+cot(x)=csc(x)cos^2(x)+cos(x)=cos(2x)cos(x)= 3/(sqrt(13))3tan^3(x)-9tan(x)=0
学习工具人工智能数学求解器工作表练习主题计算器作图计算器几何计算器验证解决方案
应用Symbolab 应用程序 (Android)作图计算器 (Android)练习 (Android)Symbolab 应用程序 (iOS)作图计算器 (iOS)练习 (iOS)Chrome 扩展程序Symbolab Math Solver API
公司关于 Symbolab日志帮助
合法的隐私权条款Cookie 政策Cookie 设置请勿出售或分享我的个人信息版权、社区准则、DSA 和其他法律资源Learneo 法律中心
社交媒体
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024