Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

5sin(x)-3sin(3x)=2sin(x)

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

5sin(x)−3sin(3x)=2sin(x)

Soluzione

x=2πn,x=π+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn
+1
Gradi
x=0∘+360∘n,x=180∘+360∘n,x=225∘+360∘n,x=315∘+360∘n,x=45∘+360∘n,x=135∘+360∘n
Fasi della soluzione
5sin(x)−3sin(3x)=2sin(x)
Sottrarre 2sin(x) da entrambi i lati3sin(x)−3sin(3x)=0
Riscrivere utilizzando identità trigonometriche
−3sin(3x)+3sin(x)
sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Riscrivere utilizzando identità trigonometriche
sin(3x)
Riscrivi come=sin(2x+x)
Usa la formula della somma degli angoli: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Usare l'Identità Doppio Angolo: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Semplifica cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Applica la regola degli esponenti: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Aggiungi i numeri: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Usare l'Identità Doppio Angolo: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Usa l'identità pitagorica: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Espandi (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Espandi sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Applicare la legge della distribuzione: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Semplifica 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Moltiplicare: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Applica la regola degli esponenti: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Aggiungi i numeri: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Espandi 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Applicare la legge della distribuzione: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Semplifica 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Moltiplica i numeri: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Applica la regola degli esponenti: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Aggiungi i numeri: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Semplifica sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Raggruppa termini simili=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Aggiungi elementi simili: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Aggiungi elementi simili: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−3(3sin(x)−4sin3(x))+3sin(x)
Semplificare −3(3sin(x)−4sin3(x))+3sin(x):−6sin(x)+12sin3(x)
−3(3sin(x)−4sin3(x))+3sin(x)
Espandi −3(3sin(x)−4sin3(x)):−9sin(x)+12sin3(x)
−3(3sin(x)−4sin3(x))
Applicare la legge della distribuzione: a(b−c)=ab−aca=−3,b=3sin(x),c=4sin3(x)=−3⋅3sin(x)−(−3)⋅4sin3(x)
Applicare le regole di sottrazione-addizione−(−a)=a=−3⋅3sin(x)+3⋅4sin3(x)
Semplifica −3⋅3sin(x)+3⋅4sin3(x):−9sin(x)+12sin3(x)
−3⋅3sin(x)+3⋅4sin3(x)
Moltiplica i numeri: 3⋅3=9=−9sin(x)+3⋅4sin3(x)
Moltiplica i numeri: 3⋅4=12=−9sin(x)+12sin3(x)
=−9sin(x)+12sin3(x)
=−9sin(x)+12sin3(x)+3sin(x)
Aggiungi elementi simili: −9sin(x)+3sin(x)=−6sin(x)=−6sin(x)+12sin3(x)
=−6sin(x)+12sin3(x)
12sin3(x)−6sin(x)=0
Risolvi per sostituzione
12sin3(x)−6sin(x)=0
Sia: sin(x)=u12u3−6u=0
12u3−6u=0:u=0,u=−22​​,u=22​​
12u3−6u=0
Fattorizza 12u3−6u:6u(2​u+1)(2​u−1)
12u3−6u
Fattorizzare dal termine comune 6u:6u(2u2−1)
12u3−6u
Applica la regola degli esponenti: ab+c=abacu3=u2u=12u2u−6u
Riscrivi 12 come 6⋅2=6⋅2u2u−6u
Fattorizzare dal termine comune 6u=6u(2u2−1)
=6u(2u2−1)
Fattorizza 2u2−1:(2​u+1)(2​u−1)
2u2−1
Riscrivi 2u2−1 come (2​u)2−12
2u2−1
Applicare la regola della radice: a=(a​)22=(2​)2=(2​)2u2−1
Riscrivi 1 come 12=(2​)2u2−12
Applica la regola degli esponenti: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Applicare la formula differenza di due quadrati: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=6u(2​u+1)(2​u−1)
6u(2​u+1)(2​u−1)=0
Usando il Principio del Fattore Zero: If ab=0allora a=0o b=0u=0or2​u+1=0or2​u−1=0
Risolvi 2​u+1=0:u=−22​​
2​u+1=0
Spostare 1a destra dell'equazione
2​u+1=0
Sottrarre 1 da entrambi i lati2​u+1−1=0−1
Semplificare2​u=−1
2​u=−1
Dividere entrambi i lati per 2​
2​u=−1
Dividere entrambi i lati per 2​2​2​u​=2​−1​
Semplificare
2​2​u​=2​−1​
Semplificare 2​2​u​:u
2​2​u​
Cancella il fattore comune: 2​=u
Semplificare 2​−1​:−22​​
2​−1​
Applica la regola delle frazioni: b−a​=−ba​=−2​1​
Razionalizzare −2​1​:−22​​
−2​1​
Moltiplicare per il coniugato 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Applicare la regola della radice: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
Risolvi 2​u−1=0:u=22​​
2​u−1=0
Spostare 1a destra dell'equazione
2​u−1=0
Aggiungi 1 ad entrambi i lati2​u−1+1=0+1
Semplificare2​u=1
2​u=1
Dividere entrambi i lati per 2​
2​u=1
Dividere entrambi i lati per 2​2​2​u​=2​1​
Semplificare
2​2​u​=2​1​
Semplificare 2​2​u​:u
2​2​u​
Cancella il fattore comune: 2​=u
Semplificare 2​1​:22​​
2​1​
Moltiplicare per il coniugato 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Applicare la regola della radice: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
Le soluzioni sonou=0,u=−22​​,u=22​​
Sostituire indietro u=sin(x)sin(x)=0,sin(x)=−22​​,sin(x)=22​​
sin(x)=0,sin(x)=−22​​,sin(x)=22​​
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
Soluzioni generali per sin(x)=0
sin(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Risolvi x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=−22​​:x=45π​+2πn,x=47π​+2πn
sin(x)=−22​​
Soluzioni generali per sin(x)=−22​​
sin(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
sin(x)=22​​:x=4π​+2πn,x=43π​+2πn
sin(x)=22​​
Soluzioni generali per sin(x)=22​​
sin(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Combinare tutte le soluzionix=2πn,x=π+2πn,x=45π​+2πn,x=47π​+2πn,x=4π​+2πn,x=43π​+2πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

sec(x)+sqrt(2)=2sqrt(2)2csc^2(x)-5csc(x)+2=0solvefor x,sin(x)cos(x)= 1/2sec^2(x)+tan^2(x)=1csc(x)-sqrt(2)=0
Strumenti di StudioAI Math SolverFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione ChromeSymbolab Math Solver API
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyTermini del contrattoPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024