Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove-1/2 =sin(-pi/(12))sqrt(2+\sqrt{3)}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove −21​=sin(−12π​)2+3​​

Solution

True
Solution steps
−21​=sin(−12π​)2+3​​
Manipulating right sidesin(−12π​)2+3​​
Use the negative angle identity: sin(−x)=−sin(x)=2+3​​(−sin(12π​))
Expand (−sin(12π​))2+3​​:−21​
(−sin(12π​))2+3​​
Remove parentheses: (−a)=−a=−sin(12π​)2+3​​
sin(12π​)=46​−2​​
sin(12π​)
Rewrite using trig identities:sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
sin(12π​)
Write sin(12π​)as sin(4π​−6π​)=sin(4π​−6π​)
Use the Angle Difference identity: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
=sin(4π​)cos(6π​)−cos(4π​)sin(6π​)
Use the following trivial identity:sin(4π​)=22​​
sin(4π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=22​​
Use the following trivial identity:cos(6π​)=23​​
cos(6π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Use the following trivial identity:cos(4π​)=22​​
cos(4π​)
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Use the following trivial identity:sin(6π​)=21​
sin(6π​)
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=21​
=22​​⋅23​​−22​​⋅21​
Simplify 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multiply the numbers: 2⋅2=4=42​3​​
Simplify 2​3​:6​
2​3​
Apply radical rule: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multiply the numbers: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multiply: 2​⋅1=2​=2⋅22​​
Multiply the numbers: 2⋅2=4=42​​
=46​​−42​​
Apply rule ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=−46​−2​​2+3​​
Simplify
−46​−2​​2+3​​
Multiply fractions: a⋅cb​=ca⋅b​=−4(6​−2​)2+3​​​
Expand (6​−2​)2+3​​:2
(6​−2​)2+3​​
Apply the distributive law: a(b−c)=ab−aca=2+3​​,b=6​,c=2​=2+3​​6​−2+3​​2​
=6​2+3​​−2​2+3​​
Simplify 6​2+3​​−2​2+3​​:2
6​2+3​​−2​2+3​​
6​2+3​​=3​+3
6​2+3​​
Apply radical rule: a​b​=a⋅b​6​2+3​​=6(2+3​)​=6(2+3​)​
Expand 6(2+3​):12+63​
6(2+3​)
Apply the distributive law: a(b+c)=ab+aca=6,b=2,c=3​=6⋅2+63​
Multiply the numbers: 6⋅2=12=12+63​
=12+63​​
12+63​​=3​+3
12+63​​
=3+63​+9​
=(3​)2+63​+(9​)2​
9​=3
9​
Factor the number: 9=32=32​
Apply radical rule: 32​=3=3
=(3​)2+63​+32​
23​⋅3=63​
23​⋅3
Multiply the numbers: 2⋅3=6=63​
=(3​)2+23​⋅3+32​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(3​)2+23​⋅3+32=(3​+3)2=(3​+3)2​
Apply radical rule: (3​+3)2​=3​+3=3​+3
=3​+3
2​2+3​​=3​+1
2​2+3​​
Apply radical rule: a​b​=a⋅b​2​2+3​​=2(2+3​)​=2(2+3​)​
Expand 2(2+3​):4+23​
2(2+3​)
Apply the distributive law: a(b+c)=ab+aca=2,b=2,c=3​=2⋅2+23​
Multiply the numbers: 2⋅2=4=4+23​
=4+23​​
4+23​​=3​+1
4+23​​
=3+23​+1​
=(3​)2+23​+(1​)2​
1​=1
1​
Apply rule 1​=1=1
=(3​)2+23​+12​
23​⋅1=23​
23​⋅1
Multiply the numbers: 2⋅1=2=23​
=(3​)2+23​⋅1+12​
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2(3​)2+23​⋅1+12=(3​+1)2=(3​+1)2​
Apply radical rule: (3​+1)2​=3​+1=3​+1
=3​+1
=3​+3−(1+3​)
−(3​+1):−3​−1
−(3​+1)
Distribute parentheses=−(3​)−(1)
Apply minus-plus rules+(−a)=−a=−3​−1
=3​+3−3​−1
Simplify 3​+3−3​−1:2
3​+3−3​−1
Add similar elements: 3​−3​=0=3−1
Subtract the numbers: 3−1=2=2
=2
=2
=−42​
Cancel the common factor: 2=−21​
=−21​
=−21​
=−21​
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin(4x)=2sin(x)(cos(x)+cos(3x))prove 1-cos^2(x)-cos^2(x)=-cos(2x)prove sin^2(x)=(sec(x)sin(x))/(tan(x)+cot(x))prove cot(A)=(cos(A))/(sin(A))prove 1-2cos^2(4)=2sin^2(4)-1

Frequently Asked Questions (FAQ)

  • Is prove-1/2 =sin(-pi/(12))sqrt(2+\sqrt{3)} ?

    The answer to whether prove-1/2 =sin(-pi/(12))sqrt(2+\sqrt{3)} is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024