Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

13>2.5cos(((2pi)/(365))(x+9))+12

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

13>2.5cos((3652π​)(x+9))+12

Solution

2π365arccos(52​)−18π​+365n<x<2π712π−365arccos(52​)​+365n
+2
La notation des intervalles
(2π365arccos(52​)−18π​+365n,2π712π−365arccos(52​)​+365n)
Décimale
58.34434…+365n<x<288.65565…+365n
étapes des solutions
13>2.5cos(3652π​(x+9))+12
Transposer les termes des côtés2.5cos(3652π​(x+9))+12<13
Multiplier les deux côtés par 10
2.5cos(3652π​(x+9))+12<13
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere is one digit to the right of the decimal point, therefore multiply by 102.5cos(3652π​(x+9))⋅10+12⋅10<13⋅10
Redéfinir25cos(3652π​(x+9))+120<130
25cos(3652π​(x+9))+120<130
Déplacer 120vers la droite
25cos(3652π​(x+9))+120<130
Soustraire 120 des deux côtés25cos(3652π​(x+9))+120−120<130−120
Simplifier25cos(3652π​(x+9))<10
25cos(3652π​(x+9))<10
Diviser les deux côtés par 25
25cos(3652π​(x+9))<10
Diviser les deux côtés par 252525cos(3652π​(x+9))​<2510​
Simplifiercos(3652π​(x+9))<52​
cos(3652π​(x+9))<52​
Pour cos(x)<a, si −1<a≤1 alors arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(52​)+2πn<3652π​(x+9)<2π−arccos(52​)+2πn
Si a<u<balors a<uandu<barccos(52​)+2πn<3652π​(x+9)and3652π​(x+9)<2π−arccos(52​)+2πn
arccos(52​)+2πn<3652π​(x+9):x>2π365arccos(52​)−18π​+365n
arccos(52​)+2πn<3652π​(x+9)
Transposer les termes des côtés3652π​(x+9)>arccos(52​)+2πn
Multiplier les deux côtés par 365
3652π​(x+9)>arccos(52​)+2πn
Multiplier les deux côtés par 365365⋅3652π​(x+9)>365arccos(52​)+365⋅2πn
Simplifier
365⋅3652π​(x+9)>365arccos(52​)+365⋅2πn
Simplifier 365⋅3652π​(x+9):2π(x+9)
365⋅3652π​(x+9)
Multiplier des fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+9)
Annuler le facteur commun : 365=(x+9)⋅2π
Simplifier 365arccos(52​)+365⋅2πn:365arccos(52​)+730πn
365arccos(52​)+365⋅2πn
Multiplier les nombres : 365⋅2=730=365arccos(52​)+730πn
2π(x+9)>365arccos(52​)+730πn
2π(x+9)>365arccos(52​)+730πn
2π(x+9)>365arccos(52​)+730πn
Diviser les deux côtés par 2π
2π(x+9)>365arccos(52​)+730πn
Diviser les deux côtés par 2π2π2π(x+9)​>2π365arccos(52​)​+2π730πn​
Simplifier
2π2π(x+9)​>2π365arccos(52​)​+2π730πn​
Simplifier 2π2π(x+9)​:x+9
2π2π(x+9)​
Diviser les nombres : 22​=1=ππ(x+9)​
Annuler le facteur commun : π=x+9
Simplifier 2π365arccos(52​)​+2π730πn​:2π365arccos(52​)​+365n
2π365arccos(52​)​+2π730πn​
Annuler 2π730πn​:365n
2π730πn​
Annuler 2π730πn​:365n
2π730πn​
Diviser les nombres : 2730​=365=π365πn​
Annuler le facteur commun : π=365n
=365n
=2π365arccos(52​)​+365n
x+9>2π365arccos(52​)​+365n
x+9>2π365arccos(52​)​+365n
x+9>2π365arccos(52​)​+365n
Déplacer 9vers la droite
x+9>2π365arccos(52​)​+365n
Soustraire 9 des deux côtésx+9−9>2π365arccos(52​)​+365n−9
Simplifierx>2π365arccos(52​)​+365n−9
x>2π365arccos(52​)​+365n−9
Simplifier 2π365arccos(52​)​−9:2π365arccos(52​)−18π​
2π365arccos(52​)​−9
Convertir un élément en fraction: 9=2π9⋅2π​=2π365arccos(52​)​−2π9⋅2π​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=2π365arccos(52​)−9⋅2π​
Multiplier les nombres : 9⋅2=18=2π365arccos(52​)−18π​
x>2π365arccos(52​)−18π​+365n
3652π​(x+9)<2π−arccos(52​)+2πn:x<2π712π−365arccos(52​)​+365n
3652π​(x+9)<2π−arccos(52​)+2πn
Multiplier les deux côtés par 365
3652π​(x+9)<2π−arccos(52​)+2πn
Multiplier les deux côtés par 365365⋅3652π​(x+9)<365⋅2π−365arccos(52​)+365⋅2πn
Simplifier
365⋅3652π​(x+9)<365⋅2π−365arccos(52​)+365⋅2πn
Simplifier 365⋅3652π​(x+9):2π(x+9)
365⋅3652π​(x+9)
Multiplier des fractions: a⋅cb​=ca⋅b​=3652⋅365π​(x+9)
Annuler le facteur commun : 365=(x+9)⋅2π
Simplifier 365⋅2π−365arccos(52​)+365⋅2πn:730π−365arccos(52​)+730πn
365⋅2π−365arccos(52​)+365⋅2πn
Multiplier les nombres : 365⋅2=730=730π−365arccos(52​)+730πn
2π(x+9)<730π−365arccos(52​)+730πn
2π(x+9)<730π−365arccos(52​)+730πn
2π(x+9)<730π−365arccos(52​)+730πn
Diviser les deux côtés par 2π
2π(x+9)<730π−365arccos(52​)+730πn
Diviser les deux côtés par 2π2π2π(x+9)​<2π730π​−2π365arccos(52​)​+2π730πn​
Simplifier
2π2π(x+9)​<2π730π​−2π365arccos(52​)​+2π730πn​
Simplifier 2π2π(x+9)​:x+9
2π2π(x+9)​
Diviser les nombres : 22​=1=ππ(x+9)​
Annuler le facteur commun : π=x+9
Simplifier 2π730π​−2π365arccos(52​)​+2π730πn​:365−2π365arccos(52​)​+365n
2π730π​−2π365arccos(52​)​+2π730πn​
Annuler 2π730π​:365
2π730π​
Annuler 2π730π​:365
2π730π​
Diviser les nombres : 2730​=365=π365π​
Annuler le facteur commun : π=365
=365
=365−2π365arccos(52​)​+2π730πn​
Annuler 2π730πn​:365n
2π730πn​
Annuler 2π730πn​:365n
2π730πn​
Diviser les nombres : 2730​=365=π365πn​
Annuler le facteur commun : π=365n
=365n
=365−2π365arccos(52​)​+365n
x+9<365−2π365arccos(52​)​+365n
x+9<365−2π365arccos(52​)​+365n
x+9<365−2π365arccos(52​)​+365n
Déplacer 9vers la droite
x+9<365−2π365arccos(52​)​+365n
Soustraire 9 des deux côtésx+9−9<365−2π365arccos(52​)​+365n−9
Simplifier
x+9−9<365−2π365arccos(52​)​+365n−9
Simplifier x+9−9:x
x+9−9
Additionner les éléments similaires : 9−9<0
=x
Simplifier 365−2π365arccos(52​)​+365n−9:365n+356−2π365arccos(52​)​
365−2π365arccos(52​)​+365n−9
Soustraire les nombres : 365−9=356=365n+356−2π365arccos(52​)​
x<365n+356−2π365arccos(52​)​
x<365n+356−2π365arccos(52​)​
x<365n+356−2π365arccos(52​)​
Simplifier 356−2π365arccos(52​)​:2π712π−365arccos(52​)​
356−2π365arccos(52​)​
Convertir un élément en fraction: 356=2π356⋅2π​=2π356⋅2π​−2π365arccos(52​)​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=2π356⋅2π−365arccos(52​)​
Multiplier les nombres : 356⋅2=712=2π712π−365arccos(52​)​
x<2π712π−365arccos(52​)​+365n
Réunir les intervallesx>2π365arccos(52​)−18π​+365nandx<2π712π−365arccos(52​)​+365n
Faire fusionner les intervalles qui se chevauchent2π365arccos(52​)−18π​+365n<x<2π712π−365arccos(52​)​+365n

Exemples populaires

(9cos(t)-1/2)/4 >= 4solvefor N, pi/2-arctan(N)<0.0001cos(pi/6 t)<0cos(x)>= 0,-pi<= x<= pi3cos(2x)+2< 5/2
Outils d'étudeSolveur mathématique IADes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension ChromeSymbolab Math Solver API
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeTermesPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024