Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos^2(x)>= cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos2(x)≥cos(x)

Solution

2π​+2πn≤x≤23π​+2πn
+2
Interval Notation
[2π​+2πn,23π​+2πn]
Decimal
1.57079…+2πn≤x≤4.71238…+2πn
Solution steps
cos2(x)≥cos(x)
Let: u=cos(x)u2≥u
u2≥u:u≤0oru≥1
u2≥u
Rewrite in standard form
u2≥u
Subtract u from both sidesu2−u≥u−u
Simplifyu2−u≥0
u2−u≥0
Factor u2−u:u(u−1)
u2−u
Apply exponent rule: ab+c=abacu2=uu=uu−u
Factor out common term u=u(u−1)
u(u−1)≥0
Identify the intervals
Find the signs of the factors of u(u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:uu−1u(u−1)​u<0−−+​u=00−0​0<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: ≥0u<0oru=0oru=1oru>1
Merge Overlapping Intervals
u≤0oru=1oru>1
The union of two intervals is the set of numbers which are in either interval
u<0oru=0
u≤0
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1
u≤0oru=1
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1oru>1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
Substitute back u=cos(x)cos(x)≤0orcos(x)≥1
cos(x)≤0:2π​+2πn≤x≤23π​+2πn
cos(x)≤0
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(0)+2πn≤x≤2π−arccos(0)+2πn
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
Simplify 2π−arccos(0):23π​
2π−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​
Simplify
2π−2π​
Convert element to fraction: 2π=22π2​=22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2−π​
2π2−π=3π
2π2−π
Multiply the numbers: 2⋅2=4=4π−π
Add similar elements: 4π−π=3π=3π
=23π​
=23π​
2π​+2πn≤x≤23π​+2πn
cos(x)≥1:No Solution for x∈R
cos(x)≥1
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(1)+2πn≤x≤arccos(1)+2πn
Simplify −arccos(1):0
−arccos(1)
Use the following trivial identity:arccos(1)=0x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−0
=0
Simplify arccos(1):0
arccos(1)
Use the following trivial identity:arccos(1)=0x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=0
0+2πn≤x≤0+2πn
SimplifyNoSolutionforx∈R
Combine the intervals2π​+2πn≤x≤23π​+2πnorFalseforallx∈R
Merge Overlapping Intervals2π​+2πn≤x≤23π​+2πn

Popular Examples

tan(θ)>0,cos(θ)<0sin(θ)=-2/5 ,tan(θ)tan^2(x)>1sin(x)<tan(x)2/pi-arctan(x)<0.001cot(x)>= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024