Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(0.75*sin((2pi*x)/3))+1.25<1.8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(0.75⋅sin(32π⋅x​))+1.25<1.8

Solution

2π−3π−3arcsin(1511​)​+3n<x<2π3arcsin(1511​)​+3n
+2
Interval Notation
(2π−3π−3arcsin(1511​)​+3n,2π3arcsin(1511​)​+3n)
Decimal
−1.89305…+3n<x<0.39305…+3n
Solution steps
0.75sin(32πx​)+1.25<1.8
Multiply both sides by 100
0.75sin(32πx​)+1.25<1.8
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1000.75sin(32πx​)⋅100+1.25⋅100<1.8⋅100
Refine75sin(32πx​)+125<180
75sin(32πx​)+125<180
Move 125to the right side
75sin(32πx​)+125<180
Subtract 125 from both sides75sin(32πx​)+125−125<180−125
Simplify75sin(32πx​)<55
75sin(32πx​)<55
Divide both sides by 75
75sin(32πx​)<55
Divide both sides by 757575sin(32πx​)​<7555​
Simplifysin(32πx​)<1511​
sin(32πx​)<1511​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(1511​)+2πn<32πx​<arcsin(1511​)+2πn
If a<u<bthen a<uandu<b−π−arcsin(1511​)+2πn<32πx​and32πx​<arcsin(1511​)+2πn
−π−arcsin(1511​)+2πn<32πx​:x>2π−3π−3arcsin(1511​)​+3n
−π−arcsin(1511​)+2πn<32πx​
Switch sides32πx​>−π−arcsin(1511​)+2πn
Multiply both sides by 3
32πx​>−π−arcsin(1511​)+2πn
Multiply both sides by 333⋅2πx​>−3π−3arcsin(1511​)+3⋅2πn
Simplify
33⋅2πx​>−3π−3arcsin(1511​)+3⋅2πn
Simplify 33⋅2πx​:2πx
33⋅2πx​
Multiply the numbers: 3⋅2=6=36πx​
Divide the numbers: 36​=2=2πx
Simplify −3π−3arcsin(1511​)+3⋅2πn:−3π−3arcsin(1511​)+6πn
−3π−3arcsin(1511​)+3⋅2πn
Multiply the numbers: 3⋅2=6=−3π−3arcsin(1511​)+6πn
2πx>−3π−3arcsin(1511​)+6πn
2πx>−3π−3arcsin(1511​)+6πn
2πx>−3π−3arcsin(1511​)+6πn
Divide both sides by 2π
2πx>−3π−3arcsin(1511​)+6πn
Divide both sides by 2π2π2πx​>−2π3π​−2π3arcsin(1511​)​+2π6πn​
Simplify
2π2πx​>−2π3π​−2π3arcsin(1511​)​+2π6πn​
Simplify 2π2πx​:x
2π2πx​
Divide the numbers: 22​=1=ππx​
Cancel the common factor: π=x
Simplify −2π3π​−2π3arcsin(1511​)​+2π6πn​:−23​−2π3arcsin(1511​)​+3n
−2π3π​−2π3arcsin(1511​)​+2π6πn​
Cancel 2π3π​:23​
2π3π​
Cancel the common factor: π=23​
=−23​−2π3arcsin(1511​)​+2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
=−23​−2π3arcsin(1511​)​+3n
x>−23​−2π3arcsin(1511​)​+3n
x>−23​−2π3arcsin(1511​)​+3n
Simplify −23​−2π3arcsin(1511​)​:2π−3π−3arcsin(1511​)​
−23​−2π3arcsin(1511​)​
Least Common Multiplier of 2,2π:2π
2,2π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 2,2:2
2,2
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 2 or 2=2
Multiply the numbers: 2=2=2
Compute an expression comprised of factors that appear either in 2 or 2π=2π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2π
For 23​:multiply the denominator and numerator by π23​=2π3π​
=−2π3π​−2π3arcsin(1511​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π−3π−3arcsin(1511​)​
x>2π−3π−3arcsin(1511​)​+3n
x>2π−3π−3arcsin(1511​)​+3n
32πx​<arcsin(1511​)+2πn:x<2π3arcsin(1511​)​+3n
32πx​<arcsin(1511​)+2πn
Multiply both sides by 3
32πx​<arcsin(1511​)+2πn
Multiply both sides by 333⋅2πx​<3arcsin(1511​)+3⋅2πn
Simplify
33⋅2πx​<3arcsin(1511​)+3⋅2πn
Simplify 33⋅2πx​:2πx
33⋅2πx​
Multiply the numbers: 3⋅2=6=36πx​
Divide the numbers: 36​=2=2πx
Simplify 3arcsin(1511​)+3⋅2πn:3arcsin(1511​)+6πn
3arcsin(1511​)+3⋅2πn
Multiply the numbers: 3⋅2=6=3arcsin(1511​)+6πn
2πx<3arcsin(1511​)+6πn
2πx<3arcsin(1511​)+6πn
2πx<3arcsin(1511​)+6πn
Divide both sides by 2π
2πx<3arcsin(1511​)+6πn
Divide both sides by 2π2π2πx​<2π3arcsin(1511​)​+2π6πn​
Simplify
2π2πx​<2π3arcsin(1511​)​+2π6πn​
Simplify 2π2πx​:x
2π2πx​
Divide the numbers: 22​=1=ππx​
Cancel the common factor: π=x
Simplify 2π3arcsin(1511​)​+2π6πn​:2π3arcsin(1511​)​+3n
2π3arcsin(1511​)​+2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Cancel 2π6πn​:3n
2π6πn​
Divide the numbers: 26​=3=π3πn​
Cancel the common factor: π=3n
=3n
=2π3arcsin(1511​)​+3n
x<2π3arcsin(1511​)​+3n
x<2π3arcsin(1511​)​+3n
x<2π3arcsin(1511​)​+3n
Combine the intervalsx>2π−3π−3arcsin(1511​)​+3nandx<2π3arcsin(1511​)​+3n
Merge Overlapping Intervals2π−3π−3arcsin(1511​)​+3n<x<2π3arcsin(1511​)​+3n

Popular Examples

cot(x)>= 1-(-1-cos(t))<0(4cos(x)+3)/(3cos(x)+1)<2sin^2(2x)<= 1/2(1-2cos^2(x))/(tan(x))>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024