Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-2cos^2(x))/(tan(x))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)1−2cos2(x)​>0

Solution

4π​+πn<x<2π​+πnor43π​+πn<x<π+πn
+2
Interval Notation
(4π​+πn,2π​+πn)∪(43π​+πn,π+πn)
Decimal
0.78539…+πn<x<1.57079…+πnor2.35619…+πn<x<3.14159…+πn
Solution steps
tan(x)1−2cos2(x)​>0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)tan(x)1−2(1−sin2(x))​>0
Simplify tan(x)1−2(1−sin2(x))​:tan(x)2sin2(x)−1​
tan(x)1−2(1−sin2(x))​
Expand 1−2(1−sin2(x)):2sin2(x)−1
1−2(1−sin2(x))
Expand −2(1−sin2(x)):−2+2sin2(x)
−2(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=−2,b=1,c=sin2(x)=−2⋅1−(−2)sin2(x)
Apply minus-plus rules−(−a)=a=−2⋅1+2sin2(x)
Multiply the numbers: 2⋅1=2=−2+2sin2(x)
=1−2+2sin2(x)
Subtract the numbers: 1−2=−1=2sin2(x)−1
=tan(x)2sin2(x)−1​
tan(x)2sin2(x)−1​>0
Periodicity of tan(x)2sin2(x)−1​:π
tan(x)2sin2(x)−1​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:=π
Express with sin, cos
tan(x)2sin2(x)−1​>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)sin(x)​2sin2(x)−1​>0
cos(x)sin(x)​2sin2(x)−1​>0
Simplifysin(x)cos(x)(2sin2(x)−1)​>0
Find the zeroes and undifined points of sin(x)cos(x)(2sin2(x)−1)​for 0≤x<π
To find the zeroes, set the inequality to zerosin(x)cos(x)(2sin2(x)−1)​=0
sin(x)cos(x)(2sin2(x)−1)​=0,0≤x<π:x=2π​,x=4π​,x=43π​
sin(x)cos(x)(2sin2(x)−1)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0cos(x)(2sin2(x)−1)=0
Solving each part separatelycos(x)=0or2sin2(x)−1=0
cos(x)=0,0≤x<π:x=2π​
cos(x)=0,0≤x<π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
2sin2(x)−1=0,0≤x<π:x=4π​,x=43π​
2sin2(x)−1=0,0≤x<π
Solve by substitution
2sin2(x)−1=0
Let: sin(x)=u2u2−1=0
2u2−1=0:u=21​​,u=−21​​
2u2−1=0
Move 1to the right side
2u2−1=0
Add 1 to both sides2u2−1+1=0+1
Simplify2u2=1
2u2=1
Divide both sides by 2
2u2=1
Divide both sides by 222u2​=21​
Simplifyu2=21​
u2=21​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=21​​,u=−21​​
Substitute back u=sin(x)sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​,sin(x)=−21​​
sin(x)=21​​,0≤x<π:x=4π​,x=43π​
sin(x)=21​​,0≤x<π
General solutions for sin(x)=21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=4π​+2πn,x=43π​+2πn
x=4π​+2πn,x=43π​+2πn
Solutions for the range 0≤x<πx=4π​,x=43π​
sin(x)=−21​​,0≤x<π:No Solution
sin(x)=−21​​,0≤x<π
General solutions for sin(x)=−21​​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=45π​+2πn,x=47π​+2πn
x=45π​+2πn,x=47π​+2πn
Solutions for the range 0≤x<πNoSolution
Combine all the solutionsx=4π​,x=43π​
Combine all the solutionsx=2π​,x=4π​,x=43π​
Find the undefined points:x=0
Find the zeros of the denominatorsin(x)=0
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<πx=0
0,4π​,2π​,43π​
Identify the intervals0<x<4π​,4π​<x<2π​,2π​<x<43π​,43π​<x<π
Summarize in a table:cos(x)2sin2(x)−1sin(x)sin(x)cos(x)(2sin2(x)−1)​​x=0+−0Undefined​0<x<4π​+−+−​x=4π​+0+0​4π​<x<2π​++++​x=2π​0++0​2π​<x<43π​−++−​x=43π​−0+0​43π​<x<π−−++​x=π−−0Undefined​​
Identify the intervals that satisfy the required condition: >04π​<x<2π​or43π​<x<π
Apply the periodicity of tan(x)2sin2(x)−1​4π​+πn<x<2π​+πnor43π​+πn<x<π+πn

Popular Examples

2cos^2(x)+cos(x)>0tan(2x)<= sqrt(3)(2sin(θ)cos(θ))/((3cos^2(θ)+1))>= 16/45cos(2t)>=-1/2-(-1-cos(t))>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024