Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(4cos(x)+3)/(3cos(x)+1)<2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos(x)+14cos(x)+3​<2

Solution

−3π​+2πn<x<3π​+2πnorarccos(−31​)+2πn<x<2π−arccos(−31​)+2πn
+2
Interval Notation
(−3π​+2πn,3π​+2πn)∪(arccos(−31​)+2πn,2π−arccos(−31​)+2πn)
Decimal
−1.04719…+2πn<x<1.04719…+2πnor1.91063…+2πn<x<4.37255…+2πn
Solution steps
3cos(x)+14cos(x)+3​<2
Let: u=cos(x)3u+14u+3​<2
3u+14u+3​<2:u<−31​oru>21​
3u+14u+3​<2
Rewrite in standard form
3u+14u+3​<2
Subtract 2 from both sides3u+14u+3​−2<2−2
Simplify3u+14u+3​−2<0
Simplify 3u+14u+3​−2:3u+1−2u+1​
3u+14u+3​−2
Convert element to fraction: 2=3u+12(3u+1)​=3u+14u+3​−3u+12(3u+1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3u+14u+3−2(3u+1)​
Expand 4u+3−2(3u+1):−2u+1
4u+3−2(3u+1)
Expand −2(3u+1):−6u−2
−2(3u+1)
Apply the distributive law: a(b+c)=ab+aca=−2,b=3u,c=1=−2⋅3u+(−2)⋅1
Apply minus-plus rules+(−a)=−a=−2⋅3u−2⋅1
Simplify −2⋅3u−2⋅1:−6u−2
−2⋅3u−2⋅1
Multiply the numbers: 2⋅3=6=−6u−2⋅1
Multiply the numbers: 2⋅1=2=−6u−2
=−6u−2
=4u+3−6u−2
Simplify 4u+3−6u−2:−2u+1
4u+3−6u−2
Group like terms=4u−6u+3−2
Add similar elements: 4u−6u=−2u=−2u+3−2
Add/Subtract the numbers: 3−2=1=−2u+1
=−2u+1
=3u+1−2u+1​
3u+1−2u+1​<0
3u+1−2u+1​<0
Identify the intervals
Find the signs of the factors of 3u+1−2u+1​
Find the signs of −2u+1
−2u+1=0:u=21​
−2u+1=0
Move 1to the right side
−2u+1=0
Subtract 1 from both sides−2u+1−1=0−1
Simplify−2u=−1
−2u=−1
Divide both sides by −2
−2u=−1
Divide both sides by −2−2−2u​=−2−1​
Simplifyu=21​
u=21​
−2u+1<0:u>21​
−2u+1<0
Move 1to the right side
−2u+1<0
Subtract 1 from both sides−2u+1−1<0−1
Simplify−2u<−1
−2u<−1
Multiply both sides by −1
−2u<−1
Multiply both sides by -1 (reverse the inequality)(−2u)(−1)>(−1)(−1)
Simplify2u>1
2u>1
Divide both sides by 2
2u>1
Divide both sides by 222u​>21​
Simplifyu>21​
u>21​
−2u+1>0:u<21​
−2u+1>0
Move 1to the right side
−2u+1>0
Subtract 1 from both sides−2u+1−1>0−1
Simplify−2u>−1
−2u>−1
Multiply both sides by −1
−2u>−1
Multiply both sides by -1 (reverse the inequality)(−2u)(−1)<(−1)(−1)
Simplify2u<1
2u<1
Divide both sides by 2
2u<1
Divide both sides by 222u​<21​
Simplifyu<21​
u<21​
Find the signs of 3u+1
3u+1=0:u=−31​
3u+1=0
Move 1to the right side
3u+1=0
Subtract 1 from both sides3u+1−1=0−1
Simplify3u=−1
3u=−1
Divide both sides by 3
3u=−1
Divide both sides by 333u​=3−1​
Simplifyu=−31​
u=−31​
3u+1<0:u<−31​
3u+1<0
Move 1to the right side
3u+1<0
Subtract 1 from both sides3u+1−1<0−1
Simplify3u<−1
3u<−1
Divide both sides by 3
3u<−1
Divide both sides by 333u​<3−1​
Simplifyu<−31​
u<−31​
3u+1>0:u>−31​
3u+1>0
Move 1to the right side
3u+1>0
Subtract 1 from both sides3u+1−1>0−1
Simplify3u>−1
3u>−1
Divide both sides by 3
3u>−1
Divide both sides by 333u​>3−1​
Simplifyu>−31​
u>−31​
Find singularity points
Find the zeros of the denominator 3u+1:u=−31​
3u+1=0
Move 1to the right side
3u+1=0
Subtract 1 from both sides3u+1−1=0−1
Simplify3u=−1
3u=−1
Divide both sides by 3
3u=−1
Divide both sides by 333u​=3−1​
Simplifyu=−31​
u=−31​
Summarize in a table:−2u+13u+13u+1−2u+1​​u<−31​+−−​u=−31​+0Undefined​−31​<u<21​+++​u=21​0+0​u>21​−+−​​
Identify the intervals that satisfy the required condition: <0u<−31​oru>21​
u<−31​oru>21​
u<−31​oru>21​
Substitute back u=cos(x)cos(x)<−31​orcos(x)>21​
cos(x)<−31​:arccos(−31​)+2πn<x<2π−arccos(−31​)+2πn
cos(x)<−31​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(−31​)+2πn<x<2π−arccos(−31​)+2πn
cos(x)>21​:−3π​+2πn<x<3π​+2πn
cos(x)>21​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(21​)+2πn<x<arccos(21​)+2πn
Simplify −arccos(21​):−3π​
−arccos(21​)
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−3π​
Simplify arccos(21​):3π​
arccos(21​)
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=3π​
−3π​+2πn<x<3π​+2πn
Combine the intervalsarccos(−31​)+2πn<x<2π−arccos(−31​)+2πnor−3π​+2πn<x<3π​+2πn
Merge Overlapping Intervals−3π​+2πn<x<3π​+2πnorarccos(−31​)+2πn<x<2π−arccos(−31​)+2πn

Popular Examples

sin^2(2x)<= 1/2(1-2cos^2(x))/(tan(x))>02cos^2(x)+cos(x)>0tan(2x)<= sqrt(3)(2sin(θ)cos(θ))/((3cos^2(θ)+1))>= 16/45
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024