Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-cos(x)-4sin(2x)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−cos(x)−4sin(2x)>0

Solution

2π​+2πn<x<π+0.12532…+2πnor23π​+2πn<x<−0.12532…+2π+2πn
+2
Interval Notation
(2π​+2πn,π+0.12532…+2πn)∪(23π​+2πn,−0.12532…+2π+2πn)
Decimal
1.57079…+2πn<x<3.26692…+2πnor4.71238…+2πn<x<6.15785…+2πn
Solution steps
−cos(x)−4sin(2x)>0
Use the following identity: sin(2x)=2cos(x)sin(x)−cos(x)−4⋅2cos(x)sin(x)>0
Simplify−cos(x)−8cos(x)sin(x)>0
Periodicity of −cos(x)−8cos(x)sin(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodscos(x),8cos(x)sin(x)
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
Periodicity of 8cos(x)sin(x):π
8cos(x)sin(x)is composed of the following functions and periods:cos(x)with periodicity of 2π
The compound periodicity is:π
Combine periods: 2π,π
=2π
Factor −cos(x)−8cos(x)sin(x):−cos(x)(8sin(x)+1)
−cos(x)−8cos(x)sin(x)
Factor out common term −cos(x)=−cos(x)(1+8sin(x))
−cos(x)(8sin(x)+1)>0
To find the zeroes, set the inequality to zero−cos(x)(8sin(x)+1)=0
Solve −cos(x)(8sin(x)+1)=0for 0≤x<2π
−cos(x)(8sin(x)+1)=0
Solving each part separately
cos(x)=0:x=2π​orx=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
8sin(x)+1=0:x=π+0.12532…orx=−0.12532…+2π
8sin(x)+1=0,0≤x<2π
Move 1to the right side
8sin(x)+1=0
Subtract 1 from both sides8sin(x)+1−1=0−1
Simplify8sin(x)=−1
8sin(x)=−1
Divide both sides by 8
8sin(x)=−1
Divide both sides by 888sin(x)​=8−1​
Simplifysin(x)=−81​
sin(x)=−81​
Apply trig inverse properties
sin(x)=−81​
General solutions for sin(x)=−81​sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−81​)+2πn,x=π+arcsin(81​)+2πn
x=arcsin(−81​)+2πn,x=π+arcsin(81​)+2πn
Solutions for the range 0≤x<2πx=π+arcsin(81​),x=−arcsin(81​)+2π
Show solutions in decimal formx=π+0.12532…,x=−0.12532…+2π
Combine all the solutions2π​orπ+0.12532…or23π​or−0.12532…+2π
The intervals between the zeros0<x<2π​,2π​<x<π+0.12532…,π+0.12532…<x<23π​,23π​<x<−0.12532…+2π,−0.12532…+2π<x<2π
Summarize in a table:cos(x)8sin(x)+1−cos(x)(8sin(x)+1)​x=0++−​0<x<2π​++−​x=2π​0+0​2π​<x<π+0.12532…−++​x=π+0.12532…−00​π+0.12532…<x<23π​−−−​x=23π​0−0​23π​<x<−0.12532…+2π+−+​x=−0.12532…+2π+00​−0.12532…+2π<x<2π++−​x=2π++−​​
Identify the intervals that satisfy the required condition: >02π​<x<π+0.12532…or23π​<x<−0.12532…+2π
Apply the periodicity of −cos(x)−8cos(x)sin(x)2π​+2πn<x<π+0.12532…+2πnor23π​+2πn<x<−0.12532…+2π+2πn

Popular Examples

(1+tan(x))/(1-tan(x))>00.96(cos(x))^2<= 0.83sin(3x)cos(3x)-1/4 >0cos(-θ)<01+cos(x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024