Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-4(cos(x)sin(x/2))>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−4(cos(x)sin(2x​))≥0

Solution

x≤2arcsin(45​−1​)+4πnor3π​+4πn≤x≤35π​+4πnor2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πnorx≥−2arcsin(41+5​​)+4π+4πn
+2
Interval Notation
(−∞+4πn,2arcsin(45​−1​)+4πn]∪[3π​+4πn,35π​+4πn]∪[2π−2arcsin(45​−1​)+4πn,2π+2arcsin(41+5​​)+4πn]∪[−2arcsin(41+5​​)+4π+4πn,∞+4πn)
Decimal
x≤0.62831…+4πnor1.04719…+4πn≤x≤5.23598…+4πnor5.65486…+4πn≤x≤8.16814…+4πnorx≥10.68141…+4πn
Solution steps
1−4cos(x)sin(2x​)≥0
Let: u=2x​1−4cos(2u)sin(u)≥0
1−4cos(2u)sin(u)≥0:2πn≤u≤arcsin(45​−1​)+2πnor6π​+2πn≤u≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn
1−4cos(2u)sin(u)≥0
Use the following identity: cos(2x)=1−2sin2(x)1−4(1−2sin2(u))sin(u)≥0
Let: v=sin(u)1−4(1−2v2)v≥0
1−4(1−2v2)v≥0:−41+5​​≤v≤45​−1​orv≥21​
1−4(1−2v2)v≥0
Factor 1−4(1−2v2)v:(2v−1)(v−4−1+5​​)(v+41+5​​)
1−4(1−2v2)v
4(1−2v2)v=−4v(2​v+1)(2​v−1)
4(1−2v2)v
Factor −2v2+1:−(2​v+1)(2​v−1)
−2v2+1
Factor out common term −1=−(2v2−1)
Factor 2v2−1:(2​v+1)(2​v−1)
2v2−1
Rewrite 2v2−1 as (2​v)2−12
2v2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2v2−1
Rewrite 1 as 12=(2​)2v2−12
Apply exponent rule: ambm=(ab)m(2​)2v2=(2​v)2=(2​v)2−12
=(2​v)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​v)2−12=(2​v+1)(2​v−1)=(2​v+1)(2​v−1)
=−(2​v+1)(2​v−1)
=−4v(2​v+1)(2​v−1)
=1−(−4v(2​v+1)(2​v−1))
Apply rule −(−a)=a=1+4v(2​v+1)(2​v−1)
Expand 1+4v(2​v+1)(2​v−1):1+8v3−4v
1+4v(2​v+1)(2​v−1)
Expand 4v(2​v+1)(2​v−1):8v3−4v
Expand (2​v+1)(2​v−1):2v2−1
(2​v+1)(2​v−1)
Apply Difference of Two Squares Formula: (a+b)(a−b)=a2−b2a=2​v,b=1=(2​v)2−12
Simplify (2​v)2−12:2v2−1
(2​v)2−12
Apply rule 1a=112=1=(2​v)2−1
(2​v)2=2v2
(2​v)2
Apply exponent rule: (a⋅b)n=anbn=(2​)2v2
(2​)2:2
Apply radical rule: a​=a21​=(221​)2
Apply exponent rule: (ab)c=abc=221​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=2
=2v2
=2v2−1
=2v2−1
=4v(2v2−1)
Expand 4v(2v2−1):8v3−4v
4v(2v2−1)
Apply the distributive law: a(b−c)=ab−aca=4v,b=2v2,c=1=4v⋅2v2−4v⋅1
=4⋅2v2v−4⋅1⋅v
Simplify 4⋅2v2v−4⋅1⋅v:8v3−4v
4⋅2v2v−4⋅1⋅v
4⋅2v2v=8v3
4⋅2v2v
Multiply the numbers: 4⋅2=8=8v2v
Apply exponent rule: ab⋅ac=ab+cv2v=v2+1=8v2+1
Add the numbers: 2+1=3=8v3
4⋅1⋅v=4v
4⋅1⋅v
Multiply the numbers: 4⋅1=4=4v
=8v3−4v
=8v3−4v
=8v3−4v
=1+8v3−4v
=1+8v3−4v
Factor 8v3−4v+1:(2v−1)(4v2+2v−1)
8v3−4v+1
Use the rational root theorem
a0​=1,an​=8
The dividers of a0​:1,The dividers of an​:1,2,4,8
Therefore, check the following rational numbers:±1,2,4,81​
21​ is a root of the expression, so factor out 2v−1
=(2v−1)2v−18v3−4v+1​
2v−18v3−4v+1​=4v2+2v−1
2v−18v3−4v+1​
Divide 2v−18v3−4v+1​:2v−18v3−4v+1​=4v2+2v−14v2−4v+1​
Divide the leading coefficients of the numerator 8v3−4v+1
and the divisor 2v−1:2v8v3​=4v2
Quotient=4v2
Multiply 2v−1 by 4v2:8v3−4v2Subtract 8v3−4v2 from 8v3−4v+1 to get new remainderRemainder=4v2−4v+1
Therefore2v−18v3−4v+1​=4v2+2v−14v2−4v+1​
=4v2+2v−14v2−4v+1​
Divide 2v−14v2−4v+1​:2v−14v2−4v+1​=2v+2v−1−2v+1​
Divide the leading coefficients of the numerator 4v2−4v+1
and the divisor 2v−1:2v4v2​=2v
Quotient=2v
Multiply 2v−1 by 2v:4v2−2vSubtract 4v2−2v from 4v2−4v+1 to get new remainderRemainder=−2v+1
Therefore2v−14v2−4v+1​=2v+2v−1−2v+1​
=4v2+2v+2v−1−2v+1​
Divide 2v−1−2v+1​:2v−1−2v+1​=−1
Divide the leading coefficients of the numerator −2v+1
and the divisor 2v−1:2v−2v​=−1
Quotient=−1
Multiply 2v−1 by −1:−2v+1Subtract −2v+1 from −2v+1 to get new remainderRemainder=0
Therefore2v−1−2v+1​=−1
=4v2+2v−1
=4v2+2v−1
=(2v−1)(4v2+2v−1)
=(2v−1)(4v2+2v−1)
Factor 4v2+2v−1:(v−4−1+5​​)(v+41+5​​)
4v2+2v−1
A quadratic of the form: ax2+bx+cwith roots x1​,x2​, can be written as (x−x1​)(x−x2​)
4v2+2v−1=0:v=4−1+5​​,v=−41+5​​
4v2+2v−1=0
Solve with the quadratic formula
4v2+2v−1=0
Quadratic Equation Formula:
For a=4,b=2,c=−1v1,2​=2⋅4−2±22−4⋅4(−1)​​
v1,2​=2⋅4−2±22−4⋅4(−1)​​
22−4⋅4(−1)​=25​
22−4⋅4(−1)​
Apply rule −(−a)=a=22+4⋅4⋅1​
Multiply the numbers: 4⋅4⋅1=16=22+16​
22=4=4+16​
Add the numbers: 4+16=20=20​
Prime factorization of 20:22⋅5
20
20divides by 220=10⋅2=2⋅10
10divides by 210=5⋅2=2⋅2⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅5
=22⋅5
=22⋅5​
Apply radical rule: =5​22​
Apply radical rule: 22​=2=25​
v1,2​=2⋅4−2±25​​
Separate the solutionsv1​=2⋅4−2+25​​,v2​=2⋅4−2−25​​
v=2⋅4−2+25​​:4−1+5​​
2⋅4−2+25​​
Multiply the numbers: 2⋅4=8=8−2+25​​
Factor −2+25​:2(−1+5​)
−2+25​
Rewrite as=−2⋅1+25​
Factor out common term 2=2(−1+5​)
=82(−1+5​)​
Cancel the common factor: 2=4−1+5​​
v=2⋅4−2−25​​:−41+5​​
2⋅4−2−25​​
Multiply the numbers: 2⋅4=8=8−2−25​​
Factor −2−25​:−2(1+5​)
−2−25​
Rewrite as=−2⋅1−25​
Factor out common term 2=−2(1+5​)
=−82(1+5​)​
Cancel the common factor: 2=−41+5​​
The solutions to the quadratic equation are:v=4−1+5​​,v=−41+5​​
4v2+2v−1=(v−4−1+5​​)(v+41+5​​)
=(2v−1)(v−4−1+5​​)(v+41+5​​)
(2v−1)(v−4−1+5​​)(v+41+5​​)≥0
Identify the intervals
Find the signs of the factors of (2v−1)(v−4−1+5​​)(v+41+5​​)
Find the signs of 2v−1
2v−1=0:v=21​
2v−1=0
Move 1to the right side
2v−1=0
Add 1 to both sides2v−1+1=0+1
Simplify2v=1
2v=1
Divide both sides by 2
2v=1
Divide both sides by 222v​=21​
Simplifyv=21​
v=21​
2v−1<0:v<21​
2v−1<0
Move 1to the right side
2v−1<0
Add 1 to both sides2v−1+1<0+1
Simplify2v<1
2v<1
Divide both sides by 2
2v<1
Divide both sides by 222v​<21​
Simplifyv<21​
v<21​
2v−1>0:v>21​
2v−1>0
Move 1to the right side
2v−1>0
Add 1 to both sides2v−1+1>0+1
Simplify2v>1
2v>1
Divide both sides by 2
2v>1
Divide both sides by 222v​>21​
Simplifyv>21​
v>21​
Find the signs of v−4−1+5​​
v−4−1+5​​=0:v=45​−1​
v−4−1+5​​=0
Move 4−1+5​​to the right side
v−4−1+5​​=0
Add 4−1+5​​ to both sidesv−4−1+5​​+4−1+5​​=0+4−1+5​​
Simplifyv=45​−1​
v=45​−1​
v−4−1+5​​<0:v<45​−1​
v−4−1+5​​<0
Move 4−1+5​​to the right side
v−4−1+5​​<0
Add 4−1+5​​ to both sidesv−4−1+5​​+4−1+5​​<0+4−1+5​​
Simplifyv<45​−1​
v<45​−1​
v−4−1+5​​>0:v>45​−1​
v−4−1+5​​>0
Move 4−1+5​​to the right side
v−4−1+5​​>0
Add 4−1+5​​ to both sidesv−4−1+5​​+4−1+5​​>0+4−1+5​​
Simplifyv>45​−1​
v>45​−1​
Find the signs of v+41+5​​
v+41+5​​=0:v=−41+5​​
v+41+5​​=0
Move 41+5​​to the right side
v+41+5​​=0
Subtract 41+5​​ from both sidesv+41+5​​−41+5​​=0−41+5​​
Simplifyv=−41+5​​
v=−41+5​​
v+41+5​​<0:v<−41+5​​
v+41+5​​<0
Move 41+5​​to the right side
v+41+5​​<0
Subtract 41+5​​ from both sidesv+41+5​​−41+5​​<0−41+5​​
Simplifyv<−41+5​​
v<−41+5​​
v+41+5​​>0:v>−41+5​​
v+41+5​​>0
Move 41+5​​to the right side
v+41+5​​>0
Subtract 41+5​​ from both sidesv+41+5​​−41+5​​>0−41+5​​
Simplifyv>−41+5​​
v>−41+5​​
Summarize in a table:2v−1v−4−1+5​​v+41+5​​(2v−1)(v−4−1+5​​)(v+41+5​​)​v<−41+5​​−−−−​v=−41+5​​−−00​−41+5​​<v<45​−1​−−++​v=45​−1​−0+0​45​−1​<v<21​−++−​v=21​0++0​v>21​++++​​
Identify the intervals that satisfy the required condition: ≥0v=−41+5​​or−41+5​​<v<45​−1​orv=45​−1​orv=21​orv>21​
Merge Overlapping Intervals
−41+5​​≤v≤45​−1​orv=21​orv>21​
The union of two intervals is the set of numbers which are in either interval
v=−41+5​​or−41+5​​<v<45​−1​
−41+5​​≤v<45​−1​
The union of two intervals is the set of numbers which are in either interval
−41+5​​≤v<45​−1​orv=45​−1​
−41+5​​≤v≤45​−1​
The union of two intervals is the set of numbers which are in either interval
−41+5​​≤v≤45​−1​orv=21​
−41+5​​≤v≤45​−1​orv=21​
The union of two intervals is the set of numbers which are in either interval
−41+5​​≤v≤45​−1​orv=21​orv>21​
−41+5​​≤v≤45​−1​orv≥21​
−41+5​​≤v≤45​−1​orv≥21​
−41+5​​≤v≤45​−1​orv≥21​
−41+5​​≤v≤45​−1​orv≥21​
Substitute back v=sin(u)−41+5​​≤sin(u)≤45​−1​orsin(u)≥21​
−41+5​​≤sin(u)≤45​−1​:2πn≤u≤arcsin(45​−1​)+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn
−41+5​​≤sin(u)≤45​−1​
If a≤u≤bthen a≤uandu≤b−41+5​​≤sin(u)andsin(u)≤45​−1​
−41+5​​≤sin(u):−arcsin(41+5​​)+2πn≤u≤π+arcsin(41+5​​)+2πn
−41+5​​≤sin(u)
Switch sidessin(u)≥−41+5​​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(−41+5​​)+2πn≤u≤π−arcsin(−41+5​​)+2πn
Simplify arcsin(−41+5​​):−arcsin(41+5​​)
arcsin(−41+5​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−41+5​​)=−arcsin(41+5​​)=−arcsin(41+5​​)
Simplify π−arcsin(−41+5​​):π+arcsin(41+5​​)
π−arcsin(−41+5​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−41+5​​)=−arcsin(41+5​​)=π−(−arcsin(41+5​​))
Apply rule −(−a)=a=π+arcsin(41+5​​)
−arcsin(41+5​​)+2πn≤u≤π+arcsin(41+5​​)+2πn
sin(u)≤45​−1​:−π−arcsin(45​−1​)+2πn≤u≤arcsin(45​−1​)+2πn
sin(u)≤45​−1​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(45​−1​)+2πn≤u≤arcsin(45​−1​)+2πn
Combine the intervals−arcsin(41+5​​)+2πn≤u≤π+arcsin(41+5​​)+2πnand−π−arcsin(45​−1​)+2πn≤u≤arcsin(45​−1​)+2πn
Merge Overlapping Intervals2πn≤u≤arcsin(45​−1​)+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn
sin(u)≥21​:6π​+2πn≤u≤65π​+2πn
sin(u)≥21​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(21​)+2πn≤u≤π−arcsin(21​)+2πn
Simplify arcsin(21​):6π​
arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​
Simplify π−arcsin(21​):65π​
π−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−6π​
Simplify
π−6π​
Convert element to fraction: π=6π6​=6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π6−π​
Add similar elements: 6π−π=5π=65π​
=65π​
6π​+2πn≤u≤65π​+2πn
Combine the intervals(2πn≤u≤arcsin(45​−1​)+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn)or6π​+2πn≤u≤65π​+2πn
Merge Overlapping Intervals2πn≤u≤arcsin(45​−1​)+2πnor6π​+2πn≤u≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn
2πn≤u≤arcsin(45​−1​)+2πnor6π​+2πn≤u≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤u≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤u<2π+2πn
Substitute back 2x​=u2πn≤(2x​)≤arcsin(45​−1​)+2πnor6π​+2πn≤(2x​)≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤(2x​)≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤(2x​)<2π+2πn
2πn≤(2x​)≤arcsin(45​−1​)+2πnor6π​+2πn≤(2x​)≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤(2x​)≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤(2x​)<2π+2πn:x≤2arcsin(45​−1​)+4πnor3π​+4πn≤x≤35π​+4πnor2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πnorx≥−2arcsin(41+5​​)+4π+4πn
2πn≤(2x​)≤arcsin(45​−1​)+2πnor6π​+2πn≤(2x​)≤65π​+2πnorπ−arcsin(45​−1​)+2πn≤(2x​)≤π+arcsin(41+5​​)+2πnor−arcsin(41+5​​)+2π+2πn≤(2x​)<2π+2πn
2πn≤2x​≤arcsin(45​−1​)+2πn:x≤2arcsin(45​−1​)+4πn
2πn≤2x​≤arcsin(45​−1​)+2πn
If a≤u≤bthen a≤uandu≤b2πn≤2x​and2x​≤arcsin(45​−1​)+2πn
2πn≤2x​:x≥4πn
2πn≤2x​
Switch sides2x​≥2πn
Multiply both sides by 2
2x​≥2πn
Multiply both sides by 222x​≥2⋅2πn
Simplifyx≥4πn
x≥4πn
2x​≤arcsin(45​−1​)+2πn:x≤2arcsin(45​−1​)+4πn
2x​≤arcsin(45​−1​)+2πn
Multiply both sides by 2
2x​≤arcsin(45​−1​)+2πn
Multiply both sides by 222x​≤2arcsin(45​−1​)+2⋅2πn
Simplify
22x​≤2arcsin(45​−1​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2arcsin(45​−1​)+2⋅2πn:2arcsin(45​−1​)+4πn
2arcsin(45​−1​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2arcsin(45​−1​)+4πn
x≤2arcsin(45​−1​)+4πn
x≤2arcsin(45​−1​)+4πn
x≤2arcsin(45​−1​)+4πn
Combine the intervalsx≥4πnandx≤2arcsin(45​−1​)+4πn
Merge Overlapping Intervalsx≤2arcsin(45​−1​)+4πn
6π​+2πn≤2x​≤65π​+2πn:3π​+4πn≤x≤35π​+4πn
6π​+2πn≤2x​≤65π​+2πn
If a≤u≤bthen a≤uandu≤b6π​+2πn≤2x​and2x​≤65π​+2πn
6π​+2πn≤2x​:x≥3π​+4πn
6π​+2πn≤2x​
Switch sides2x​≥6π​+2πn
Multiply both sides by 2
2x​≥6π​+2πn
Multiply both sides by 222x​≥2⋅6π​+2⋅2πn
Simplify
22x​≥2⋅6π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
x≥3π​+4πn
x≥3π​+4πn
x≥3π​+4πn
2x​≤65π​+2πn:x≤35π​+4πn
2x​≤65π​+2πn
Multiply both sides by 2
2x​≤65π​+2πn
Multiply both sides by 222x​≤2⋅65π​+2⋅2πn
Simplify
22x​≤2⋅65π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multiply fractions: a⋅cb​=ca⋅b​=65π2​
Multiply the numbers: 5⋅2=10=610π​
Cancel the common factor: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=35π​+4πn
x≤35π​+4πn
x≤35π​+4πn
x≤35π​+4πn
Combine the intervalsx≥3π​+4πnandx≤35π​+4πn
Merge Overlapping Intervals3π​+4πn≤x≤35π​+4πn
π−arcsin(45​−1​)+2πn≤2x​≤π+arcsin(41+5​​)+2πn:2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πn
π−arcsin(45​−1​)+2πn≤2x​≤π+arcsin(41+5​​)+2πn
If a≤u≤bthen a≤uandu≤bπ−arcsin(45​−1​)+2πn≤2x​and2x​≤π+arcsin(41+5​​)+2πn
π−arcsin(45​−1​)+2πn≤2x​:x≥2π−2arcsin(45​−1​)+4πn
π−arcsin(45​−1​)+2πn≤2x​
Switch sides2x​≥π−arcsin(45​−1​)+2πn
Multiply both sides by 2
2x​≥π−arcsin(45​−1​)+2πn
Multiply both sides by 222x​≥2π−2arcsin(45​−1​)+2⋅2πn
Simplify
22x​≥2π−2arcsin(45​−1​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π−2arcsin(45​−1​)+2⋅2πn:2π−2arcsin(45​−1​)+4πn
2π−2arcsin(45​−1​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2π−2arcsin(45​−1​)+4πn
x≥2π−2arcsin(45​−1​)+4πn
x≥2π−2arcsin(45​−1​)+4πn
x≥2π−2arcsin(45​−1​)+4πn
2x​≤π+arcsin(41+5​​)+2πn:x≤2π+2arcsin(41+5​​)+4πn
2x​≤π+arcsin(41+5​​)+2πn
Multiply both sides by 2
2x​≤π+arcsin(41+5​​)+2πn
Multiply both sides by 222x​≤2π+2arcsin(41+5​​)+2⋅2πn
Simplify
22x​≤2π+2arcsin(41+5​​)+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π+2arcsin(41+5​​)+2⋅2πn:2π+2arcsin(41+5​​)+4πn
2π+2arcsin(41+5​​)+2⋅2πn
Multiply the numbers: 2⋅2=4=2π+2arcsin(41+5​​)+4πn
x≤2π+2arcsin(41+5​​)+4πn
x≤2π+2arcsin(41+5​​)+4πn
x≤2π+2arcsin(41+5​​)+4πn
Combine the intervalsx≥2π−2arcsin(45​−1​)+4πnandx≤2π+2arcsin(41+5​​)+4πn
Merge Overlapping Intervals2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πn
−arcsin(41+5​​)+2π+2πn≤2x​<2π+2πn:x≥−2arcsin(41+5​​)+4π+4πn
−arcsin(41+5​​)+2π+2πn≤2x​<2π+2πn
If a≤u<bthen a≤uandu<b−arcsin(41+5​​)+2π+2πn≤2x​and2x​<2π+2πn
−arcsin(41+5​​)+2π+2πn≤2x​:x≥−2arcsin(41+5​​)+4π+4πn
−arcsin(41+5​​)+2π+2πn≤2x​
Switch sides2x​≥−arcsin(41+5​​)+2π+2πn
Multiply both sides by 2
2x​≥−arcsin(41+5​​)+2π+2πn
Multiply both sides by 222x​≥−2arcsin(41+5​​)+2⋅2π+2⋅2πn
Simplify
22x​≥−2arcsin(41+5​​)+2⋅2π+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2arcsin(41+5​​)+2⋅2π+2⋅2πn:−2arcsin(41+5​​)+4π+4πn
−2arcsin(41+5​​)+2⋅2π+2⋅2πn
Multiply the numbers: 2⋅2=4=−2arcsin(41+5​​)+4π+4πn
x≥−2arcsin(41+5​​)+4π+4πn
x≥−2arcsin(41+5​​)+4π+4πn
x≥−2arcsin(41+5​​)+4π+4πn
2x​<2π+2πn:x<4π+4πn
2x​<2π+2πn
Multiply both sides by 2
2x​<2π+2πn
Multiply both sides by 222x​<2⋅2π+2⋅2πn
Simplifyx<4π+4πn
x<4π+4πn
Combine the intervalsx≥−2arcsin(41+5​​)+4π+4πnandx<4π+4πn
Merge Overlapping Intervalsx≥−2arcsin(41+5​​)+4π+4πn
Combine the intervalsx≤2arcsin(45​−1​)+4πnor3π​+4πn≤x≤35π​+4πnor2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πnorx≥−2arcsin(41+5​​)+4π+4πn
x≤2arcsin(45​−1​)+4πnor3π​+4πn≤x≤35π​+4πnor2π−2arcsin(45​−1​)+4πn≤x≤2π+2arcsin(41+5​​)+4πnorx≥−2arcsin(41+5​​)+4π+4πn

Popular Examples

-1<= arccos(x^2)2sin(5x)<= sqrt(2)(2cos(x)-sqrt(3))>02sin^2(x/4)<1.5cos^2(x)< 3/4
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024