Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/2 (10sin(2pi*60x))<-0.52

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

21​(10sin(2π⋅60x))<−0.52

Solution

376.99111…−π+0.10418…​+601​n<x<−0.00027…+601​n
+2
Interval Notation
(376.99111…−π+0.10418…​+601​n,−0.00027…+601​n)
Decimal
−0.00805…+601​n<x<−0.00027…+601​n
Solution steps
21​⋅10sin(2π60x)<−0.52
Simplify 21​⋅10:5
21​⋅10
Convert element to fraction: 10=110​=21​⋅110​
Cross-cancel common factor: 2=15​
Apply the fraction rule: 1a​=a=5
5sin(2π60x)<−0.52
Divide both sides by 5
5sin(2π60x)<−0.52
Divide both sides by 555sin(2π60x)​<5−0.52​
Simplify
55sin(2π60x)​<5−0.52​
Simplify 55sin(2π60x)​:sin(2π60x)
55sin(2π60x)​
Divide the numbers: 55​=1=sin(2π60x)
Simplify 5−0.52​:−0.104
5−0.52​
Apply the fraction rule: b−a​=−ba​=−50.52​
Divide the numbers: 50.52​=0.104=−0.104
sin(2π60x)<−0.104
sin(2π60x)<−0.104
sin(2π60x)<−0.104
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(−0.104)+2πn<2π60x<arcsin(−0.104)+2πn
If a<u<bthen a<uandu<b−π−arcsin(−0.104)+2πn<2π60xand2π60x<arcsin(−0.104)+2πn
−π−arcsin(−0.104)+2πn<2π60x:x>120π−π+arcsin(0.104)​+601​n
−π−arcsin(−0.104)+2πn<2π60x
Switch sides2π60x>−π−arcsin(−0.104)+2πn
Simplify −π−arcsin(−0.104)+2πn:−π+arcsin(0.104)+2πn
−π−arcsin(−0.104)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−0.104)=−arcsin(0.104)=−π−(−arcsin(0.104))+2πn
Apply rule −(−a)=a=−π+arcsin(0.104)+2πn
2π60x>−π+arcsin(0.104)+2πn
Divide both sides by 120π
2π60x>−π+arcsin(0.104)+2πn
Divide both sides by 120π120π2π60x​>−120ππ​+120πarcsin(0.104)​+120π2πn​
Simplify
120π2π60x​>−120ππ​+120πarcsin(0.104)​+120π2πn​
Simplify 120π2π60x​:x
120π2π60x​
Multiply the numbers: 2⋅60=120=120π120πx​
Divide the numbers: 120120​=1=ππx​
Cancel the common factor: π=x
Simplify −120ππ​+120πarcsin(0.104)​+120π2πn​:−1201​+120πarcsin(0.104)​+60n​
−120ππ​+120πarcsin(0.104)​+120π2πn​
Cancel 120ππ​:1201​
120ππ​
Cancel the common factor: π=1201​
=−1201​+120πarcsin(0.104)​+120π2πn​
Cancel 120π2πn​:60n​
120π2πn​
Cancel 120π2πn​:60n​
120π2πn​
Cancel the common factor: 2=60ππn​
Cancel the common factor: π=60n​
=60n​
=−1201​+120πarcsin(0.104)​+60n​
x>−1201​+120πarcsin(0.104)​+60n​
x>−1201​+120πarcsin(0.104)​+60n​
Simplify −1201​+120πarcsin(0.104)​:120π−π+arcsin(0.104)​
−1201​+120πarcsin(0.104)​
Least Common Multiplier of 120,120π:120π
120,120π
Lowest Common Multiplier (LCM)
Least Common Multiplier of 120,120:120
120,120
Least Common Multiplier (LCM)
Prime factorization of 120:2⋅2⋅2⋅3⋅5
120
120divides by 2120=60⋅2=2⋅60
60divides by 260=30⋅2=2⋅2⋅30
30divides by 230=15⋅2=2⋅2⋅2⋅15
15divides by 315=5⋅3=2⋅2⋅2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅5
Prime factorization of 120:2⋅2⋅2⋅3⋅5
120
120divides by 2120=60⋅2=2⋅60
60divides by 260=30⋅2=2⋅2⋅30
30divides by 230=15⋅2=2⋅2⋅2⋅15
15divides by 315=5⋅3=2⋅2⋅2⋅3⋅5
2,3,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3⋅5
Multiply each factor the greatest number of times it occurs in either 120 or 120=2⋅2⋅2⋅3⋅5
Multiply the numbers: 2⋅2⋅2⋅3⋅5=120=120
Compute an expression comprised of factors that appear either in 120 or 120π=120π
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 120π
For 1201​:multiply the denominator and numerator by π1201​=120π1π​=120ππ​
=−120ππ​+120πarcsin(0.104)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=120π−π+arcsin(0.104)​
x>120π−π+arcsin(0.104)​+601​n
x>120π−π+arcsin(0.104)​+601​n
2π60x<arcsin(−0.104)+2πn:x<−120πarcsin(0.104)​+60n​
2π60x<arcsin(−0.104)+2πn
Simplify arcsin(−0.104)+2πn:−arcsin(0.104)+2πn
arcsin(−0.104)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−0.104)=−arcsin(0.104)=−arcsin(0.104)+2πn
2π60x<−arcsin(0.104)+2πn
Divide both sides by 120π
2π60x<−arcsin(0.104)+2πn
Divide both sides by 120π120π2π60x​<−120πarcsin(0.104)​+120π2πn​
Simplify
120π2π60x​<−120πarcsin(0.104)​+120π2πn​
Simplify 120π2π60x​:x
120π2π60x​
Multiply the numbers: 2⋅60=120=120π120πx​
Divide the numbers: 120120​=1=ππx​
Cancel the common factor: π=x
Simplify −120πarcsin(0.104)​+120π2πn​:−120πarcsin(0.104)​+60n​
−120πarcsin(0.104)​+120π2πn​
Cancel 120π2πn​:60n​
120π2πn​
Cancel 120π2πn​:60n​
120π2πn​
Cancel the common factor: 2=60ππn​
Cancel the common factor: π=60n​
=60n​
=−120πarcsin(0.104)​+60n​
x<−120πarcsin(0.104)​+60n​
x<−120πarcsin(0.104)​+60n​
x<−120πarcsin(0.104)​+60n​
Combine the intervalsx>120π−π+arcsin(0.104)​+601​nandx<−120πarcsin(0.104)​+60n​
Merge Overlapping Intervals376.99111…−π+0.10418…​+601​n<x<−0.00027…+601​n

Popular Examples

2sin^2(x)<1sqrt(2)sin(θ)-1<02arcsin(x^2-2x+(sqrt(3))/2)>(3pi)/2pi/2-arctan(e^x)<0.012>(24)/(sin(θ))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024