Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2>(24)/(sin(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2>sin(θ)24​

Solution

−π+2πn<θ<2πn
+2
Interval Notation
(−π+2πn,2πn)
Decimal
−3.14159…+2πn<θ<2πn
Solution steps
2>sin(θ)24​
Switch sidessin(θ)24​<2
Rewrite in standard form
sin(θ)24​<2
Subtract 2 from both sidessin(θ)24​−2<2−2
Simplifysin(θ)24​−2<0
Simplify sin(θ)24​−2:sin(θ)24−2sin(θ)​
sin(θ)24​−2
Convert element to fraction: 2=sin(θ)2sin(θ)​=sin(θ)24​−sin(θ)2sin(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(θ)24−2sin(θ)​
sin(θ)24−2sin(θ)​<0
sin(θ)24−2sin(θ)​<0
Factor sin(θ)24−2sin(θ)​:sin(θ)−2(sin(θ)−12)​
sin(θ)24−2sin(θ)​
Factor −2sin(θ)+24:−2(sin(θ)−12)
−2sin(θ)+24
Factor out common term −2:−2(sin(θ)−12)
−2sin(θ)+24
Rewrite 24 as 2⋅12=−2sin(θ)+2⋅12
Factor out common term −2=−2(sin(θ)−12)
=−2(sin(θ)−12)
=sin(θ)−2(sin(θ)−12)​
sin(θ)−2(sin(θ)−12)​<0
Multiply both sides by −1 (reverse the inequality)sin(θ)(−2(sin(θ)−12))(−1)​>0⋅(−1)
Simplifysin(θ)2(sin(θ)−12)​>0
Divide both sides by 22sin(θ)2(sin(θ)−12)​​>20​
Simplifysin(θ)sin(θ)−12​>0
Identify the intervals
Find the signs of the factors of sin(θ)sin(θ)−12​
Find the signs of sin(θ)−12
sin(θ)−12=0:sin(θ)=12
sin(θ)−12=0
Move 12to the right side
sin(θ)−12=0
Add 12 to both sidessin(θ)−12+12=0+12
Simplifysin(θ)=12
sin(θ)=12
sin(θ)−12<0:sin(θ)<12
sin(θ)−12<0
Move 12to the right side
sin(θ)−12<0
Add 12 to both sidessin(θ)−12+12<0+12
Simplifysin(θ)<12
sin(θ)<12
sin(θ)−12>0:sin(θ)>12
sin(θ)−12>0
Move 12to the right side
sin(θ)−12>0
Add 12 to both sidessin(θ)−12+12>0+12
Simplifysin(θ)>12
sin(θ)>12
Find the signs of sin(θ)
sin(θ)=0
sin(θ)<0
sin(θ)>0
Find singularity points
Find the zeros of the denominator sin(θ):sin(θ)=0
Summarize in a table:sin(θ)−12sin(θ)sin(θ)sin(θ)−12​​sin(θ)<0−−+​sin(θ)=0−0Undefined​0<sin(θ)<12−+−​sin(θ)=120+0​sin(θ)>12+++​​
Identify the intervals that satisfy the required condition: >0sin(θ)<0orsin(θ)>12
sin(θ)<0orsin(θ)>12
sin(θ)<0:−π+2πn<θ<2πn
sin(θ)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<θ<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<θ<0+2πn
Simplify−π+2πn<θ<2πn
sin(θ)>12:False for all θ∈R
sin(θ)>12
Range of sin(θ):−1≤sin(θ)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(θ)≤1−1≤sin(θ)≤1
sin(θ)>12and−1≤sin(θ)≤1:False
Let y=sin(θ)
Combine the intervalsy>12and−1≤y≤1
Merge Overlapping Intervals
y>12and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>12and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforθ∈R
Falseforallθ∈R
Combine the intervals−π+2πn<θ<2πnorFalseforallθ∈R
Merge Overlapping Intervals−π+2πn<θ<2πn

Popular Examples

5sin(1/2 (x+pi/4))-1>= 7arctan(x)<= 10^34sin^2(x)>= 1cos((pi*x)/2)>0tan(x)<=-(sqrt(3))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024