Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2arcsin(x^2-2x+(sqrt(3))/2)>(3pi)/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2arcsin(x2−2x+23​​)>23π​

Solution

Falseforallx∈R
Solution steps
2arcsin(x2−2x+23​​)>23π​
Divide both sides by 2
2arcsin(x2−2x+23​​)>23π​
Divide both sides by 222arcsin(x2−2x+23​​)​>223π​​
Simplify
22arcsin(x2−2x+23​​)​>223π​​
Simplify 22arcsin(x2−2x+23​​)​:arcsin(x2−2x+23​​)
22arcsin(x2−2x+23​​)​
Divide the numbers: 22​=1=arcsin(x2−2x+23​​)
Simplify 223π​​:43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
arcsin(x2−2x+23​​)>43π​
arcsin(x2−2x+23​​)>43π​
arcsin(x2−2x+23​​)>43π​
Range of arcsin(x2−2x+23​​):arcsin(23​​−1)≤arcsin(x2−2x+23​​)≤2π​
Function range definition
Range of x2−2x+23​​:f(x)≥23​​−1
Function range definition
Find the minimum and maximum value in each defined interval and unite the results
Domain of x2−2x+23​​:True for all x∈R
Domain definition
The function has no undefined points nor domain constraints. Therefore, the domain isTrueforallx∈R
Extreme Points of x2−2x+23​​:Minimum(1,23​​−1)
First Derivative Test definition
f′(x)=2x−2
dxd​(x2−2x+23​​)
Apply the Sum/Difference Rule: (f±g)′=f′±g′=dxd​(x2)−dxd​(2x)+dxd​(23​​)
dxd​(x2)=2x
dxd​(x2)
Apply the Power Rule: dxd​(xa)=a⋅xa−1=2x2−1
Simplify=2x
dxd​(2x)=2
dxd​(2x)
Take the constant out: (a⋅f)′=a⋅f′=2dxdx​
Apply the common derivative: dxdx​=1=2⋅1
Simplify=2
dxd​(23​​)=0
dxd​(23​​)
Derivative of a constant: dxd​(a)=0=0
=2x−2+0
Simplify=2x−2
Find intervals:Decreasing:−∞<x<1,Increasing:1<x<∞
f′(x)=2x−2
Find the critical points:x=1
Critical point definition
f′(x)=0:x=1
2x−2=0
Move 2to the right side
2x−2=0
Add 2 to both sides2x−2+2=0+2
Simplify2x=2
2x=2
Divide both sides by 2
2x=2
Divide both sides by 222x​=22​
Simplifyx=1
x=1
x=1
f′(x)>0:x>1
2x−2>0
Move 2to the right side
2x−2>0
Add 2 to both sides2x−2+2>0+2
Simplify2x>2
2x>2
Divide both sides by 2
2x>2
Divide both sides by 222x​>22​
Simplifyx>1
x>1
f′(x)<0:x<1
2x−2<0
Move 2to the right side
2x−2<0
Add 2 to both sides2x−2+2<0+2
Simplify2x<2
2x<2
Divide both sides by 2
2x<2
Divide both sides by 222x​<22​
Simplifyx<1
x<1
Combine intervals with domain
Domain of x2−2x+23​​:True for all x∈R
Domain definition
The function has no undefined points nor domain constraints. Therefore, the domain isTrueforallx∈R
Combine x=1 with domain:x=1
x=1andTrueforallx∈R
Simplifyx=1
Combine 1<x<∞ with domain:x>1
1<x<∞andTrueforallx∈R
Simplifyx>1
Combine −∞<x<1 with domain:x<1
−∞<x<1andTrueforallx∈R
Simplifyx<1
−∞<x<1,x=1,1<x<∞
−∞<x<1,x=1,1<x<∞
Summary of the monotone intervals behaviorSignBehavior​−∞<x<1f′(x)<0Decreasing​x=1f′(x)=0Minimum​1<x<∞f′(x)>0Increasing​​
Decreasing:−∞<x<1,Increasing:1<x<∞
Plug x=1into x2−2x+23​​:23​​−1
12−2⋅1+23​​
Simplify23​​−1
Minimum(1,23​​−1)
Find the range for the interval −∞<x<∞:23​​−1≤f(x)<∞
Compute the values of the function at the edges of the interval:
x→−∞lim​(x2−2x+23​​)=∞
x→−∞lim​(x2−2x+23​​)
x→alim​[f(x)±g(x)]=x→alim​f(x)±x→alim​g(x)
With the exception of indeterminate form
=x→−∞lim​(x2)−x→−∞lim​(2x)+x→−∞lim​(23​​)
x→−∞lim​(x2)=∞
x→−∞lim​(x2)
Apply Infinity Property: x→±∞lim​(axn+⋯+bx+c)=∞,a>0,n is even
a=1,n=2
=∞
x→−∞lim​(2x)=−∞
x→−∞lim​(2x)
Apply Infinity Property: x→−∞lim​(axn+⋯+bx+c)=−∞,a>0,n is odd
a=2,n=1
=−∞
x→−∞lim​(23​​)=23​​
x→−∞lim​(23​​)
x→alim​c=c=23​​
=∞−(−∞)+23​​
Simplify ∞−(−∞)+23​​:∞
∞−(−∞)+23​​
Apply Infinity Property: ∞+∞=∞=∞+23​​
Apply Infinity Property: ∞+c=∞=∞
=∞
x→∞lim​(x2−2x+23​​)=∞
x→∞lim​(x2−2x+23​​)
Apply the following algebraic property:a+b=a(1+ab​)
x2−2x+23​​=x2(1−x2​+2x23​​)
=x→∞lim​(x2(1−x2​+2x23​​))
x→alim​[f(x)⋅g(x)]=x→alim​f(x)⋅x→alim​g(x)
With the exception of indeterminate form
=x→∞lim​(x2)⋅x→∞lim​(1−x2​+2x23​​)
x→∞lim​(x2)=∞
x→∞lim​(x2)
Apply Infinity Property: x→±∞lim​(axn+⋯+bx+c)=∞,a>0,n is even
a=1,n=2
=∞
x→∞lim​(1−x2​+2x23​​)=1
x→∞lim​(1−x2​+2x23​​)
x→alim​[f(x)±g(x)]=x→alim​f(x)±x→alim​g(x)
With the exception of indeterminate form
=x→∞lim​(1)−x→∞lim​(x2​)+x→∞lim​(2x23​​)
x→∞lim​(1)=1
x→∞lim​(1)
x→alim​c=c=1
x→∞lim​(x2​)=0
x→∞lim​(x2​)
Apply Infinity Property: x→∞lim​(xac​)=0=0
x→∞lim​(2x23​​)=0
x→∞lim​(2x23​​)
x→alim​[c⋅f(x)]=c⋅x→alim​f(x)=23​​⋅x→∞lim​(x21​)
x→alim​[g(x)f(x)​]=limx→a​g(x)limx→a​f(x)​,x→alim​g(x)=0
With the exception of indeterminate form
=23​​⋅limx→∞​(x2)limx→∞​(1)​
x→∞lim​(1)=1
x→∞lim​(1)
x→alim​c=c=1
x→∞lim​(x2)=∞
x→∞lim​(x2)
Apply Infinity Property: x→±∞lim​(axn+⋯+bx+c)=∞,a>0,n is even
a=1,n=2
=∞
=23​​⋅∞1​
Simplify 23​​⋅∞1​:0
23​​⋅∞1​
Apply Infinity Property: ∞c​=0=23​​⋅0
Apply rule 0⋅a=0=0
=0
=1−0+0
Simplify=1
=∞⋅1
Apply Infinity Property: c⋅∞=∞=∞
The interval has a minimum point at x=1 with value f(1)=23​​−1
Combine the function value at the edge with the extreme points of the function in the interval:
Minimum function value at the domain interval −∞<x<∞ is 23​​−1
Maximum function value at the domain interval −∞<x<∞ is ∞
Therefore the range of x2−2x+23​​ at the domain interval −∞<x<∞ is
23​​−1≤f(x)<∞
Combine the ranges of all domain intervals to obtain the function range f(x)≥23​​−1
Since arcsin is an increasing function with range of −2π​≤arcsin(x)≤2π​ and x2−2x+23​​≥23​​−1arcsin(23​​−1)≤arcsin(x2−2x+23​​)≤2π​
arcsin(x2−2x+23​​)>43π​andarcsin(23​​−1)≤arcsin(x2−2x+23​​)≤2π​:False
Let y=arcsin(x2−2x+23​​)
Combine the intervalsy>43π​andarcsin(23​​−1)≤y≤2π​
Merge Overlapping Intervals
y>43π​andarcsin(23​​−1)≤y≤2π​
The intersection of two intervals is the set of numbers which are in both intervals
y>43π​andarcsin(23​​−1)≤y≤2π​
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R

Popular Examples

pi/2-arctan(e^x)<0.012>(24)/(sin(θ))5sin(1/2 (x+pi/4))-1>= 7arctan(x)<= 10^34sin^2(x)>= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024