Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cot(x)+(sin(x))/(cos(x)-2)>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cot(x)+cos(x)−2sin(x)​≥0

Solution

2πn<x≤3π​+2πnorπ+2πn<x≤35π​+2πn
+2
Interval Notation
(2πn,3π​+2πn]∪(π+2πn,35π​+2πn]
Decimal
2πn<x≤1.04719…+2πnor3.14159…+2πn<x≤5.23598…+2πn
Solution steps
cot(x)+cos(x)−2sin(x)​≥0
Periodicity of cot(x)+cos(x)−2sin(x)​:2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodscot(x),cos(x)−2sin(x)​
Periodicity of cot(x):π
Periodicity of cot(x)is π=π
Periodicity of cos(x)−2sin(x)​:2π
cos(x)−2sin(x)​is composed of the following functions and periods:cot(x)with periodicity of π
The compound periodicity is:2π
Combine periods: π,2π
=2π
Express with sin, cos
cot(x)+cos(x)−2sin(x)​≥0
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​sin(x)cos(x)​+cos(x)−2sin(x)​≥0
sin(x)cos(x)​+cos(x)−2sin(x)​≥0
Simplify sin(x)cos(x)​+cos(x)−2sin(x)​:sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​
sin(x)cos(x)​+cos(x)−2sin(x)​
Least Common Multiplier of sin(x),cos(x)−2:sin(x)(cos(x)−2)
sin(x),cos(x)−2
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(x) or cos(x)−2=sin(x)(cos(x)−2)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(x)(cos(x)−2)
For sin(x)cos(x)​:multiply the denominator and numerator by cos(x)−2sin(x)cos(x)​=sin(x)(cos(x)−2)cos(x)(cos(x)−2)​
For cos(x)−2sin(x)​:multiply the denominator and numerator by sin(x)cos(x)−2sin(x)​=(cos(x)−2)sin(x)sin(x)sin(x)​=sin(x)(cos(x)−2)sin2(x)​
=sin(x)(cos(x)−2)cos(x)(cos(x)−2)​+sin(x)(cos(x)−2)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​
sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​≥0
Find the zeroes and undifined points of sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerosin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​=0
sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​=0,0≤x<2π:x=3π​,x=35π​
sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0cos(x)(cos(x)−2)+sin2(x)=0
Rewrite using trig identities
sin2(x)+(−2+cos(x))cos(x)
Use the Pythagorean identity: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=1−cos2(x)+(−2+cos(x))cos(x)
Simplify 1−cos2(x)+(−2+cos(x))cos(x):−2cos(x)+1
1−cos2(x)+(−2+cos(x))cos(x)
=1−cos2(x)+cos(x)(−2+cos(x))
Expand cos(x)(−2+cos(x)):−2cos(x)+cos2(x)
cos(x)(−2+cos(x))
Apply the distributive law: a(b+c)=ab+aca=cos(x),b=−2,c=cos(x)=cos(x)(−2)+cos(x)cos(x)
Apply minus-plus rules+(−a)=−a=−2cos(x)+cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=−2cos(x)+cos2(x)
=1−cos2(x)−2cos(x)+cos2(x)
Simplify 1−cos2(x)−2cos(x)+cos2(x):−2cos(x)+1
1−cos2(x)−2cos(x)+cos2(x)
Group like terms=−cos2(x)−2cos(x)+cos2(x)+1
Add similar elements: −cos2(x)+cos2(x)=0=−2cos(x)+1
=−2cos(x)+1
=−2cos(x)+1
1−2cos(x)=0
Move 1to the right side
1−2cos(x)=0
Subtract 1 from both sides1−2cos(x)−1=0−1
Simplify−2cos(x)=−1
−2cos(x)=−1
Divide both sides by −2
−2cos(x)=−1
Divide both sides by −2−2−2cos(x)​=−2−1​
Simplifycos(x)=21​
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Solutions for the range 0≤x<2πx=3π​,x=35π​
Find the undefined points:x=0,x=π
Find the zeros of the denominatorsin(x)(cos(x)−2)=0
Solving each part separatelysin(x)=0orcos(x)−2=0
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
cos(x)−2=0,0≤x<2π:No Solution
cos(x)−2=0,0≤x<2π
Move 2to the right side
cos(x)−2=0
Add 2 to both sidescos(x)−2+2=0+2
Simplifycos(x)=2
cos(x)=2
−1≤cos(x)≤1NoSolution
Combine all the solutionsx=0,x=π
0,3π​,π,35π​
Identify the intervals0<x<3π​,3π​<x<π,π<x<35π​,35π​<x<2π
Summarize in a table:cos(x)(cos(x)−2)+sin2(x)sin(x)cos(x)−2sin(x)(cos(x)−2)cos(x)(cos(x)−2)+sin2(x)​​x=0−0−Undefined​0<x<3π​−+−+​x=3π​0+−0​3π​<x<π++−−​x=π+0−Undefined​π<x<35π​+−−+​x=35π​0−−0​35π​<x<2π−−−−​x=2π−0−Undefined​​
Identify the intervals that satisfy the required condition: ≥00<x<3π​orx=3π​orπ<x<35π​orx=35π​
Merge Overlapping Intervals
0<x≤3π​orπ<x<35π​orx=35π​
The union of two intervals is the set of numbers which are in either interval
0<x<3π​orx=3π​
0<x≤3π​
The union of two intervals is the set of numbers which are in either interval
0<x≤3π​orπ<x<35π​
0<x≤3π​orπ<x<35π​
The union of two intervals is the set of numbers which are in either interval
0<x≤3π​orπ<x<35π​orx=35π​
0<x≤3π​orπ<x≤35π​
0<x≤3π​orπ<x≤35π​
Apply the periodicity of cot(x)+cos(x)−2sin(x)​2πn<x≤3π​+2πnorπ+2πn<x≤35π​+2πn

Popular Examples

(2sin(2x)+sqrt(2))*tan(x)<0cos(x)<=-(sqrt(2))/2 ,-pi<= x<= pi6sin(2x-(2pi)/3)>01>tan(x)cos(x)-(sqrt(3))/2 <= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024