Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1-4sin^2(x))/(cos(x))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)1−4sin2(x)​>0

Solution

−6π​+2πn<x<6π​+2πnor2π​+2πn<x<65π​+2πnor67π​+2πn<x<23π​+2πn
+2
Interval Notation
(−6π​+2πn,6π​+2πn)∪(2π​+2πn,65π​+2πn)∪(67π​+2πn,23π​+2πn)
Decimal
−0.52359…+2πn<x<0.52359…+2πnor1.57079…+2πn<x<2.61799…+2πnor3.66519…+2πn<x<4.71238…+2πn
Solution steps
cos(x)1−4sin2(x)​>0
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)cos(x)1−4(1−cos2(x))​>0
Simplify cos(x)1−4(1−cos2(x))​:cos(x)4cos2(x)−3​
cos(x)1−4(1−cos2(x))​
Expand 1−4(1−cos2(x)):4cos2(x)−3
1−4(1−cos2(x))
Expand −4(1−cos2(x)):−4+4cos2(x)
−4(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=cos2(x)=−4⋅1−(−4)cos2(x)
Apply minus-plus rules−(−a)=a=−4⋅1+4cos2(x)
Multiply the numbers: 4⋅1=4=−4+4cos2(x)
=1−4+4cos2(x)
Subtract the numbers: 1−4=−3=4cos2(x)−3
=cos(x)4cos2(x)−3​
cos(x)4cos2(x)−3​>0
Let: u=cos(x)u4u2−3​>0
u4u2−3​>0:−23​​<u<0oru>23​​
u4u2−3​>0
Factor u4u2−3​:u(2u+3​)(2u−3​)​
u4u2−3​
Factor 4u2−3:(2u+3​)(2u−3​)
4u2−3
Rewrite 4u2−3 as (2u)2−(3​)2
4u2−3
Rewrite 4 as 22=22u2−3
Apply radical rule: a=(a​)23=(3​)2=22u2−(3​)2
Apply exponent rule: ambm=(ab)m22u2=(2u)2=(2u)2−(3​)2
=(2u)2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2u)2−(3​)2=(2u+3​)(2u−3​)=(2u+3​)(2u−3​)
=u(2u+3​)(2u−3​)​
u(2u+3​)(2u−3​)​>0
Identify the intervals
Find the signs of the factors of u(2u+3​)(2u−3​)​
Find the signs of 2u+3​
2u+3​=0:u=−23​​
2u+3​=0
Move 3​to the right side
2u+3​=0
Subtract 3​ from both sides2u+3​−3​=0−3​
Simplify2u=−3​
2u=−3​
Divide both sides by 2
2u=−3​
Divide both sides by 222u​=2−3​​
Simplifyu=−23​​
u=−23​​
2u+3​<0:u<−23​​
2u+3​<0
Move 3​to the right side
2u+3​<0
Subtract 3​ from both sides2u+3​−3​<0−3​
Simplify2u<−3​
2u<−3​
Divide both sides by 2
2u<−3​
Divide both sides by 222u​<2−3​​
Simplifyu<−23​​
u<−23​​
2u+3​>0:u>−23​​
2u+3​>0
Move 3​to the right side
2u+3​>0
Subtract 3​ from both sides2u+3​−3​>0−3​
Simplify2u>−3​
2u>−3​
Divide both sides by 2
2u>−3​
Divide both sides by 222u​>2−3​​
Simplifyu>−23​​
u>−23​​
Find the signs of 2u−3​
2u−3​=0:u=23​​
2u−3​=0
Move 3​to the right side
2u−3​=0
Add 3​ to both sides2u−3​+3​=0+3​
Simplify2u=3​
2u=3​
Divide both sides by 2
2u=3​
Divide both sides by 222u​=23​​
Simplifyu=23​​
u=23​​
2u−3​<0:u<23​​
2u−3​<0
Move 3​to the right side
2u−3​<0
Add 3​ to both sides2u−3​+3​<0+3​
Simplify2u<3​
2u<3​
Divide both sides by 2
2u<3​
Divide both sides by 222u​<23​​
Simplifyu<23​​
u<23​​
2u−3​>0:u>23​​
2u−3​>0
Move 3​to the right side
2u−3​>0
Add 3​ to both sides2u−3​+3​>0+3​
Simplify2u>3​
2u>3​
Divide both sides by 2
2u>3​
Divide both sides by 222u​>23​​
Simplifyu>23​​
u>23​​
Find the signs of u
u=0
u<0
u>0
Find singularity points
Find the zeros of the denominator u:u=0
Summarize in a table:2u+3​2u−3​uu(2u+3​)(2u−3​)​​u<−23​​−−−−​u=−23​​0−−0​−23​​<u<0+−−+​u=0+−0Undefined​0<u<23​​+−+−​u=23​​+0+0​u>23​​++++​​
Identify the intervals that satisfy the required condition: >0−23​​<u<0oru>23​​
−23​​<u<0oru>23​​
−23​​<u<0oru>23​​
Substitute back u=cos(x)−23​​<cos(x)<0orcos(x)>23​​
−23​​<cos(x)<0:2π​+2πn<x<65π​+2πnor67π​+2πn<x<23π​+2πn
−23​​<cos(x)<0
If a<u<bthen a<uandu<b−23​​<cos(x)andcos(x)<0
−23​​<cos(x):−65π​+2πn<x<65π​+2πn
−23​​<cos(x)
Switch sidescos(x)>−23​​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(−23​​)+2πn<x<arccos(−23​​)+2πn
Simplify −arccos(−23​​):−65π​
−arccos(−23​​)
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−65π​
Simplify arccos(−23​​):65π​
arccos(−23​​)
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=65π​
−65π​+2πn<x<65π​+2πn
cos(x)<0:2π​+2πn<x<23π​+2πn
cos(x)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<x<2π−arccos(0)+2πn
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
Simplify 2π−arccos(0):23π​
2π−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​
Simplify
2π−2π​
Convert element to fraction: 2π=22π2​=22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2−π​
2π2−π=3π
2π2−π
Multiply the numbers: 2⋅2=4=4π−π
Add similar elements: 4π−π=3π=3π
=23π​
=23π​
2π​+2πn<x<23π​+2πn
Combine the intervals−65π​+2πn<x<65π​+2πnand2π​+2πn<x<23π​+2πn
Merge Overlapping Intervals2π​+2πn<x<65π​+2πnor67π​+2πn<x<23π​+2πn
cos(x)>23​​:−6π​+2πn<x<6π​+2πn
cos(x)>23​​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(23​​)+2πn<x<arccos(23​​)+2πn
Simplify −arccos(23​​):−6π​
−arccos(23​​)
Use the following trivial identity:arccos(23​​)=6π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−6π​
Simplify arccos(23​​):6π​
arccos(23​​)
Use the following trivial identity:arccos(23​​)=6π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=6π​
−6π​+2πn<x<6π​+2πn
Combine the intervals(2π​+2πn<x<65π​+2πnor67π​+2πn<x<23π​+2πn)or−6π​+2πn<x<6π​+2πn
Merge Overlapping Intervals−6π​+2πn<x<6π​+2πnor2π​+2πn<x<65π​+2πnor67π​+2πn<x<23π​+2πn

Popular Examples

cos((3x)/2)cos(x/2)>= 0(2sin(x)-1)*(sqrt(3)tan(x)+1)>0(2cos(x)-1)(2cos(x)+sqrt(2))<02cos(3x-1/2)>= (sqrt(2))/22cos(x)+sqrt(2)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024