Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

arcsin(6x)+arcsin(6sqrt(3x))=-pi/2

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

arcsin(6x)+arcsin(63x​)=−2π​

Solución

Sinsolucioˊnparax∈R
Pasos de solución
arcsin(6x)+arcsin(63x​)=−2π​
Re-escribir usando identidades trigonométricas
arcsin(6x)+arcsin(63x​)
Utilizar la identidad suma-producto: arcsin(s)+arcsin(t)=arcsin(s1−t2​+t1−s2​)=arcsin(6x1−(63x​)2​+63x​1−(6x)2​)
arcsin(6x1−(63x​)2​+63x​1−(6x)2​)=−2π​
Aplicar propiedades trigonométricas inversas
arcsin(6x1−(63x​)2​+63x​1−(6x)2​)=−2π​
arcsin(x)=a⇒x=sin(a)6x1−(63x​)2​+63x​1−(6x)2​=sin(−2π​)
sin(−2π​)=−1
sin(−2π​)
Utilizar la siguiente propiedad: sin(−x)=−sin(x)sin(−2π​)=−sin(2π​)=−sin(2π​)
Utilizar la siguiente identidad trivial:sin(2π​)=1
sin(2π​)
tabla de valores periódicos con 2πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
=1
=−1
6x1−(63x​)2​+63x​1−(6x)2​=−1
6x1−(63x​)2​+63x​1−(6x)2​=−1
Resolver 6x1−(63x​)2​+63x​1−(6x)2​=−1:Sin solución para x∈R
6x1−(63x​)2​+63x​1−(6x)2​=−1
Eliminar raíces cuadradas
6x1−(63x​)2​+63x​1−(6x)2​=−1
Restar 63x​1−(6x)2​ de ambos lados6x1−(63x​)2​+63x​1−(6x)2​−63x​1−(6x)2​=−1−63x​1−(6x)2​
Simplificar61−(63x​)2​x=−1−63x​1−(6x)2​
Elevar al cuadrado ambos lados:36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
6x1−(63x​)2​+63x​1−(6x)2​=−1
(61−(63x​)2​x)2=(−1−63x​1−(6x)2​)2
Desarrollar (61−(63x​)2​x)2:36x2−3888x3
(61−(63x​)2​x)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62x2(1−(63x​)2​)2
(1−(63x​)2​)2:1−(63x​)2
Aplicar las leyes de los exponentes: a​=a21​=((1−(63x​)2)21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=(1−(63x​)2)21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=1−(63x​)2
=62(1−(63x​)2)x2
62=36=36(1−(63x​)2)x2
Desarrollar 36(1−(63x​)2)x2:36x2−3888x3
36(1−(63x​)2)x2
(63x​)2=62⋅3x
(63x​)2
3x​=3​x​
3x​
Aplicar la siguiente propiedad de los radicales: asumiendo que a≥0,b≥0=3​x​
=(63​x​)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62(3​)2(x​)2
(3​)2:3
Aplicar las leyes de los exponentes: a​=a21​=(321​)2
Aplicar las leyes de los exponentes: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=3
=62⋅3(x​)2
(x​)2:x
Aplicar las leyes de los exponentes: a​=a21​=(x21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=x21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=x
=62⋅3x
=36x2(−62⋅3x+1)
62⋅3x=108x
62⋅3x
62=36=36⋅3x
Multiplicar los numeros: 36⋅3=108=108x
=36x2(−108x+1)
=36x2(1−108x)
Poner los parentesis utilizando: a(b−c)=ab−aca=36x2,b=1,c=108x=36x2⋅1−36x2⋅108x
=36⋅1⋅x2−36⋅108x2x
Simplificar 36⋅1⋅x2−36⋅108x2x:36x2−3888x3
36⋅1⋅x2−36⋅108x2x
36⋅1⋅x2=36x2
36⋅1⋅x2
Multiplicar los numeros: 36⋅1=36=36x2
36⋅108x2x=3888x3
36⋅108x2x
Multiplicar los numeros: 36⋅108=3888=3888x2x
Aplicar las leyes de los exponentes: ab⋅ac=ab+cx2x=x2+1=3888x2+1
Sumar: 2+1=3=3888x3
=36x2−3888x3
=36x2−3888x3
=36x2−3888x3
Desarrollar (−1−63x​1−(6x)2​)2:1+123​x​1−36x2​+108x−3888x3
(−1−63x​1−(6x)2​)2
Aplicar la formula del binomio al cuadrado: (a−b)2=a2−2ab+b2a=−1,b=63x​1−(6x)2​
=(−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
Simplificar (−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2:1+123x​1−(6x)2​+363x1−(6x)2
(−1)2−2(−1)⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
Aplicar la regla −(−a)=a=(−1)2+2⋅1⋅63x​1−(6x)2​+(63x​1−(6x)2​)2
(−1)2=1
(−1)2
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−1)2=12=12
Aplicar la regla 1a=1=1
2⋅1⋅63x​1−(6x)2​=123x​1−(6x)2​
2⋅1⋅63x​1−(6x)2​
Multiplicar los numeros: 2⋅1⋅6=12=123x​1−(6x)2​
(63x​1−(6x)2​)2=363x1−(6x)2
(63x​1−(6x)2​)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62(3x​)2(1−(6x)2​)2
(3x​)2:3x
Aplicar las leyes de los exponentes: a​=a21​=((3x)21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=(3x)21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=3x
=62⋅3x(1−(6x)2​)2
(1−(6x)2​)2:1−(6x)2
Aplicar las leyes de los exponentes: a​=a21​=((1−(6x)2)21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=(1−(6x)2)21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=1−(6x)2
=62⋅3x(1−(6x)2)
62=36=36⋅3x(1−(6x)2)
=1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
=1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
Desarrollar 1+123x​1−(6x)2​+36⋅3x(1−(6x)2):1+123​x​1−36x2​+108x−3888x3
1+123x​1−(6x)2​+36⋅3x(1−(6x)2)
123x​1−(6x)2​=123​x​1−36x2​
123x​1−(6x)2​
3x​=3​x​
3x​
Aplicar la siguiente propiedad de los radicales: asumiendo que a≥0,b≥0=3​x​
=123​x​−(6x)2+1​
1−(6x)2​=1−36x2​
1−(6x)2​
(6x)2=36x2
(6x)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62x2
62=36=36x2
=1−36x2​
=123​x​−36x2+1​
36⋅3x(1−(6x)2)=108x(1−36x2)
36⋅3x(1−(6x)2)
(6x)2=36x2
(6x)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62x2
62=36=36x2
=36⋅3x(−36x2+1)
Multiplicar los numeros: 36⋅3=108=108x(−36x2+1)
=1+123​x​−36x2+1​+108x(−36x2+1)
Expandir 108x(1−36x2):108x−3888x3
108x(1−36x2)
Poner los parentesis utilizando: a(b−c)=ab−aca=108x,b=1,c=36x2=108x⋅1−108x⋅36x2
=108⋅1⋅x−108⋅36x2x
Simplificar 108⋅1⋅x−108⋅36x2x:108x−3888x3
108⋅1⋅x−108⋅36x2x
108⋅1⋅x=108x
108⋅1⋅x
Multiplicar los numeros: 108⋅1=108=108x
108⋅36x2x=3888x3
108⋅36x2x
Multiplicar los numeros: 108⋅36=3888=3888x2x
Aplicar las leyes de los exponentes: ab⋅ac=ab+cx2x=x2+1=3888x2+1
Sumar: 2+1=3=3888x3
=108x−3888x3
=108x−3888x3
=1+123​x​1−36x2​+108x−3888x3
=1+123​x​1−36x2​+108x−3888x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
Restar 108x−3888x3 de ambos lados36x2−3888x3−(108x−3888x3)=1+123​x​1−36x2​+108x−3888x3−(108x−3888x3)
Simplificar36x2−108x=123​x​1−36x2​+1
Restar 1 de ambos lados36x2−108x−1=123​x​1−36x2​+1−1
Simplificar36x2−108x−1=123​x​1−36x2​
Elevar al cuadrado ambos lados:1296x4−7776x3+11592x2+216x+1=432x−15552x3
36x2−3888x3=1+123​x​1−36x2​+108x−3888x3
(36x2−108x−1)2=(123​x​1−36x2​)2
Desarrollar (36x2−108x−1)2:1296x4−7776x3+11592x2+216x+1
(36x2−108x−1)2
(36x2−108x−1)2=(36x2−108x−1)(36x2−108x−1)=(36x2−108x−1)(36x2−108x−1)
Expandir (36x2−108x−1)(36x2−108x−1):1296x4−7776x3+11592x2+216x+1
(36x2−108x−1)(36x2−108x−1)
Aplicar la siguiente regla de productos notables=36x2⋅36x2+36x2(−108x)+36x2(−1)+(−108x)⋅36x2+(−108x)(−108x)+(−108x)(−1)+(−1)⋅36x2+(−1)(−108x)+(−1)(−1)
Aplicar las reglas de los signos+(−a)=−a,(−a)(−b)=ab=36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Simplificar 36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1:1296x4−7776x3+11592x2+216x+1
36⋅36x2x2−36⋅108x2x−36⋅1⋅x2−108⋅36x2x+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Sumar elementos similares: −36⋅108x2x−108⋅36x2x=−2⋅108⋅36x2x=36⋅36x2x2−2⋅108⋅36x2x−36⋅1⋅x2+108⋅108xx+108⋅1⋅x−1⋅36x2+1⋅108x+1⋅1
Sumar elementos similares: 108⋅1⋅x+1⋅108x=2⋅1⋅108x=36⋅36x2x2−2⋅108⋅36x2x−36⋅1⋅x2+108⋅108xx+2⋅1⋅108x−1⋅36x2+1⋅1
Sumar elementos similares: −36⋅1⋅x2−1⋅36x2=−2⋅1⋅36x2=36⋅36x2x2−2⋅108⋅36x2x−2⋅1⋅36x2+108⋅108xx+2⋅1⋅108x+1⋅1
36⋅36x2x2=1296x4
36⋅36x2x2
Multiplicar los numeros: 36⋅36=1296=1296x2x2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cx2x2=x2+2=1296x2+2
Sumar: 2+2=4=1296x4
2⋅108⋅36x2x=7776x3
2⋅108⋅36x2x
Multiplicar los numeros: 2⋅108⋅36=7776=7776x2x
Aplicar las leyes de los exponentes: ab⋅ac=ab+cx2x=x2+1=7776x2+1
Sumar: 2+1=3=7776x3
2⋅1⋅36x2=72x2
2⋅1⋅36x2
Multiplicar los numeros: 2⋅1⋅36=72=72x2
108⋅108xx=11664x2
108⋅108xx
Multiplicar los numeros: 108⋅108=11664=11664xx
Aplicar las leyes de los exponentes: ab⋅ac=ab+cxx=x1+1=11664x1+1
Sumar: 1+1=2=11664x2
2⋅1⋅108x=216x
2⋅1⋅108x
Multiplicar los numeros: 2⋅1⋅108=216=216x
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=1296x4−7776x3−72x2+11664x2+216x+1
Sumar elementos similares: −72x2+11664x2=11592x2=1296x4−7776x3+11592x2+216x+1
=1296x4−7776x3+11592x2+216x+1
=1296x4−7776x3+11592x2+216x+1
Desarrollar (123​x​1−36x2​)2:432x−15552x3
(123​x​1−36x2​)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=122(3​)2(x​)2(1−36x2​)2
(3​)2:3
Aplicar las leyes de los exponentes: a​=a21​=(321​)2
Aplicar las leyes de los exponentes: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=3
=122⋅3(x​)2(1−36x2​)2
(x​)2:x
Aplicar las leyes de los exponentes: a​=a21​=(x21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=x21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=x
=122⋅3x(1−36x2​)2
(1−36x2​)2:1−36x2
Aplicar las leyes de los exponentes: a​=a21​=((1−36x2)21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=(1−36x2)21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=1−36x2
=122⋅3x(1−36x2)
Simplificar=432x(1−36x2)
Desarrollar 432x(1−36x2):432x−15552x3
432x(1−36x2)
Poner los parentesis utilizando: a(b−c)=ab−aca=432x,b=1,c=36x2=432x⋅1−432x⋅36x2
=432⋅1⋅x−432⋅36x2x
Simplificar 432⋅1⋅x−432⋅36x2x:432x−15552x3
432⋅1⋅x−432⋅36x2x
432⋅1⋅x=432x
432⋅1⋅x
Multiplicar los numeros: 432⋅1=432=432x
432⋅36x2x=15552x3
432⋅36x2x
Multiplicar los numeros: 432⋅36=15552=15552x2x
Aplicar las leyes de los exponentes: ab⋅ac=ab+cx2x=x2+1=15552x2+1
Sumar: 2+1=3=15552x3
=432x−15552x3
=432x−15552x3
=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Resolver 1296x4−7776x3+11592x2+216x+1=432x−15552x3:x≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Desplace 15552x3a la izquierda
1296x4−7776x3+11592x2+216x+1=432x−15552x3
Sumar 15552x3 a ambos lados1296x4−7776x3+11592x2+216x+1+15552x3=432x−15552x3+15552x3
Simplificar1296x4+7776x3+11592x2+216x+1=432x
1296x4+7776x3+11592x2+216x+1=432x
Desplace 432xa la izquierda
1296x4+7776x3+11592x2+216x+1=432x
Restar 432x de ambos lados1296x4+7776x3+11592x2+216x+1−432x=432x−432x
Simplificar1296x4+7776x3+11592x2−216x+1=0
1296x4+7776x3+11592x2−216x+1=0
Dividir ambos lados entre 129612961296x4​+12967776x3​+129611592x2​−1296216x​+12961​=12960​
Escribir en la forma binómica an​xn+…+a1​x+a0​=0x4+6x3+18161x2​−6x​+12961​=0
Encontrar una solución para x4+6x3+8.94444…x2−0.16666…x+0.00077…=0 utilizando el método de Newton-Raphson:x≈0.00923…
x4+6x3+8.94444…x2−0.16666…x+0.00077…=0
Definición del método de Newton-Raphson
f(x)=x4+6x3+8.94444…x2−0.16666…x+0.00077…
Hallar f′(x):4x3+18x2+17.88888…x−0.16666…
dxd​(x4+6x3+8.94444…x2−0.16666…x+0.00077…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dxd​(x4)+dxd​(6x3)+dxd​(8.94444…x2)−dxd​(0.16666…x)+dxd​(0.00077…)
dxd​(x4)=4x3
dxd​(x4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4x4−1
Simplificar=4x3
dxd​(6x3)=18x2
dxd​(6x3)
Sacar la constante: (a⋅f)′=a⋅f′=6dxd​(x3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=6⋅3x3−1
Simplificar=18x2
dxd​(8.94444…x2)=17.88888…x
dxd​(8.94444…x2)
Sacar la constante: (a⋅f)′=a⋅f′=8.94444…dxd​(x2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=8.94444…⋅2x2−1
Simplificar=17.88888…x
dxd​(0.16666…x)=0.16666…
dxd​(0.16666…x)
Sacar la constante: (a⋅f)′=a⋅f′=0.16666…dxdx​
Aplicar la regla de derivación: dxdx​=1=0.16666…⋅1
Simplificar=0.16666…
dxd​(0.00077…)=0
dxd​(0.00077…)
Derivada de una constante: dxd​(a)=0=0
=4x3+18x2+17.88888…x−0.16666…+0
Simplificar=4x3+18x2+17.88888…x−0.16666…
Sea x0​=0Calcular xn+1​ hasta que Δxn+1​<0.000001
x1​=0.00462…:Δx1​=0.00462…
f(x0​)=04+6⋅03+8.94444…⋅02−0.16666…⋅0+0.00077…=0.00077…f′(x0​)=4⋅03+18⋅02+17.88888…⋅0−0.16666…=−0.16666…x1​=0.00462…
Δx1​=∣0.00462…−0∣=0.00462…Δx1​=0.00462…
x2​=0.00693…:Δx2​=0.00230…
f(x1​)=0.00462…4+6⋅0.00462…3+8.94444…⋅0.00462…2−0.16666…⋅0.00462…+0.00077…=0.00019…f′(x1​)=4⋅0.00462…3+18⋅0.00462…2+17.88888…⋅0.00462…−0.16666…=−0.08346…x2​=0.00693…
Δx2​=∣0.00693…−0.00462…∣=0.00230…Δx2​=0.00230…
x3​=0.00808…:Δx3​=0.00114…
f(x2​)=0.00693…4+6⋅0.00693…3+8.94444…⋅0.00693…2−0.16666…⋅0.00693…+0.00077…=0.00004…f′(x2​)=4⋅0.00693…3+18⋅0.00693…2+17.88888…⋅0.00693…−0.16666…=−0.04176…x3​=0.00808…
Δx3​=∣0.00808…−0.00693…∣=0.00114…Δx3​=0.00114…
x4​=0.00865…:Δx4​=0.00057…
f(x3​)=0.00808…4+6⋅0.00808…3+8.94444…⋅0.00808…2−0.16666…⋅0.00808…+0.00077…=0.00001…f′(x3​)=4⋅0.00808…3+18⋅0.00808…2+17.88888…⋅0.00808…−0.16666…=−0.02088…x4​=0.00865…
Δx4​=∣0.00865…−0.00808…∣=0.00057…Δx4​=0.00057…
x5​=0.00894…:Δx5​=0.00028…
f(x4​)=0.00865…4+6⋅0.00865…3+8.94444…⋅0.00865…2−0.16666…⋅0.00865…+0.00077…=2.99676E−6f′(x4​)=4⋅0.00865…3+18⋅0.00865…2+17.88888…⋅0.00865…−0.16666…=−0.01044…x5​=0.00894…
Δx5​=∣0.00894…−0.00865…∣=0.00028…Δx5​=0.00028…
x6​=0.00908…:Δx6​=0.00014…
f(x5​)=0.00894…4+6⋅0.00894…3+8.94444…⋅0.00894…2−0.16666…⋅0.00894…+0.00077…=7.49047E−7f′(x5​)=4⋅0.00894…3+18⋅0.00894…2+17.88888…⋅0.00894…−0.16666…=−0.00522…x6​=0.00908…
Δx6​=∣0.00908…−0.00894…∣=0.00014…Δx6​=0.00014…
x7​=0.00915…:Δx7​=0.00007…
f(x6​)=0.00908…4+6⋅0.00908…3+8.94444…⋅0.00908…2−0.16666…⋅0.00908…+0.00077…=1.87244E−7f′(x6​)=4⋅0.00908…3+18⋅0.00908…2+17.88888…⋅0.00908…−0.16666…=−0.00261…x7​=0.00915…
Δx7​=∣0.00915…−0.00908…∣=0.00007…Δx7​=0.00007…
x8​=0.00919…:Δx8​=0.00003…
f(x7​)=0.00915…4+6⋅0.00915…3+8.94444…⋅0.00915…2−0.16666…⋅0.00915…+0.00077…=4.68088E−8f′(x7​)=4⋅0.00915…3+18⋅0.00915…2+17.88888…⋅0.00915…−0.16666…=−0.00130…x8​=0.00919…
Δx8​=∣0.00919…−0.00915…∣=0.00003…Δx8​=0.00003…
x9​=0.00921…:Δx9​=0.00001…
f(x8​)=0.00919…4+6⋅0.00919…3+8.94444…⋅0.00919…2−0.16666…⋅0.00919…+0.00077…=1.17019E−8f′(x8​)=4⋅0.00919…3+18⋅0.00919…2+17.88888…⋅0.00919…−0.16666…=−0.00065…x9​=0.00921…
Δx9​=∣0.00921…−0.00919…∣=0.00001…Δx9​=0.00001…
x10​=0.00922…:Δx10​=8.95953E−6
f(x9​)=0.00921…4+6⋅0.00921…3+8.94444…⋅0.00921…2−0.16666…⋅0.00921…+0.00077…=2.92544E−9f′(x9​)=4⋅0.00921…3+18⋅0.00921…2+17.88888…⋅0.00921…−0.16666…=−0.00032…x10​=0.00922…
Δx10​=∣0.00922…−0.00921…∣=8.95953E−6Δx10​=8.95953E−6
x11​=0.00922…:Δx11​=4.47973E−6
f(x10​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=7.31357E−10f′(x10​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00016…x11​=0.00922…
Δx11​=∣0.00922…−0.00922…∣=4.47973E−6Δx11​=4.47973E−6
x12​=0.00922…:Δx12​=2.23985E−6
f(x11​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=1.82839E−10f′(x11​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00008…x12​=0.00922…
Δx12​=∣0.00922…−0.00922…∣=2.23985E−6Δx12​=2.23985E−6
x13​=0.00922…:Δx13​=1.11992E−6
f(x12​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=4.57096E−11f′(x12​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00004…x13​=0.00922…
Δx13​=∣0.00922…−0.00922…∣=1.11992E−6Δx13​=1.11992E−6
x14​=0.00923…:Δx14​=5.59961E−7
f(x13​)=0.00922…4+6⋅0.00922…3+8.94444…⋅0.00922…2−0.16666…⋅0.00922…+0.00077…=1.14274E−11f′(x13​)=4⋅0.00922…3+18⋅0.00922…2+17.88888…⋅0.00922…−0.16666…=−0.00002…x14​=0.00923…
Δx14​=∣0.00923…−0.00922…∣=5.59961E−7Δx14​=5.59961E−7
x≈0.00923…
Aplicar la división larga Equation0:x−0.00923…x4+6x3+18161x2​−6x​+12961​​=x3+6.00923…x2+8.99991…x−0.08359…
x3+6.00923…x2+8.99991…x−0.08359…≈0
Encontrar una solución para x3+6.00923…x2+8.99991…x−0.08359…=0 utilizando el método de Newton-Raphson:x≈0.00923…
x3+6.00923…x2+8.99991…x−0.08359…=0
Definición del método de Newton-Raphson
f(x)=x3+6.00923…x2+8.99991…x−0.08359…
Hallar f′(x):3x2+12.01846…x+8.99991…
dxd​(x3+6.00923…x2+8.99991…x−0.08359…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dxd​(x3)+dxd​(6.00923…x2)+dxd​(8.99991…x)−dxd​(0.08359…)
dxd​(x3)=3x2
dxd​(x3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=3x3−1
Simplificar=3x2
dxd​(6.00923…x2)=12.01846…x
dxd​(6.00923…x2)
Sacar la constante: (a⋅f)′=a⋅f′=6.00923…dxd​(x2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=6.00923…⋅2x2−1
Simplificar=12.01846…x
dxd​(8.99991…x)=8.99991…
dxd​(8.99991…x)
Sacar la constante: (a⋅f)′=a⋅f′=8.99991…dxdx​
Aplicar la regla de derivación: dxdx​=1=8.99991…⋅1
Simplificar=8.99991…
dxd​(0.08359…)=0
dxd​(0.08359…)
Derivada de una constante: dxd​(a)=0=0
=3x2+12.01846…x+8.99991…−0
Simplificar=3x2+12.01846…x+8.99991…
Sea x0​=0Calcular xn+1​ hasta que Δxn+1​<0.000001
x1​=0.00928…:Δx1​=0.00928…
f(x0​)=03+6.00923…⋅02+8.99991…⋅0−0.08359…=−0.08359…f′(x0​)=3⋅02+12.01846…⋅0+8.99991…=8.99991…x1​=0.00928…
Δx1​=∣0.00928…−0∣=0.00928…Δx1​=0.00928…
x2​=0.00923…:Δx2​=0.00005…
f(x1​)=0.00928…3+6.00923…⋅0.00928…2+8.99991…⋅0.00928…−0.08359…=0.00051…f′(x1​)=3⋅0.00928…2+12.01846…⋅0.00928…+8.99991…=9.11180…x2​=0.00923…
Δx2​=∣0.00923…−0.00928…∣=0.00005…Δx2​=0.00005…
x3​=0.00923…:Δx3​=2.15173E−9
f(x2​)=0.00923…3+6.00923…⋅0.00923…2+8.99991…⋅0.00923…−0.08359…=1.96046E−8f′(x2​)=3⋅0.00923…2+12.01846…⋅0.00923…+8.99991…=9.11111…x3​=0.00923…
Δx3​=∣0.00923…−0.00923…∣=2.15173E−9Δx3​=2.15173E−9
x≈0.00923…
Aplicar la división larga Equation0:x−0.00923…x3+6.00923…x2+8.99991…x−0.08359…​=x2+6.01846…x+9.05547…
x2+6.01846…x+9.05547…≈0
Encontrar una solución para x2+6.01846…x+9.05547…=0 utilizando el método de Newton-Raphson:x≈−3.00922…
x2+6.01846…x+9.05547…=0
Definición del método de Newton-Raphson
f(x)=x2+6.01846…x+9.05547…
Hallar f′(x):2x+6.01846…
dxd​(x2+6.01846…x+9.05547…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dxd​(x2)+dxd​(6.01846…x)+dxd​(9.05547…)
dxd​(x2)=2x
dxd​(x2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2x2−1
Simplificar=2x
dxd​(6.01846…x)=6.01846…
dxd​(6.01846…x)
Sacar la constante: (a⋅f)′=a⋅f′=6.01846…dxdx​
Aplicar la regla de derivación: dxdx​=1=6.01846…⋅1
Simplificar=6.01846…
dxd​(9.05547…)=0
dxd​(9.05547…)
Derivada de una constante: dxd​(a)=0=0
=2x+6.01846…+0
Simplificar=2x+6.01846…
Sea x0​=−2Calcular xn+1​ hasta que Δxn+1​<0.000001
x1​=−2.50461…:Δx1​=0.50461…
f(x0​)=(−2)2+6.01846…(−2)+9.05547…=1.01854…f′(x0​)=2(−2)+6.01846…=2.01846…x1​=−2.50461…
Δx1​=∣−2.50461…−(−2)∣=0.50461…Δx1​=0.50461…
x2​=−2.75692…:Δx2​=0.25230…
f(x1​)=(−2.50461…)2+6.01846…(−2.50461…)+9.05547…=0.25463…f′(x1​)=2(−2.50461…)+6.01846…=1.00923…x2​=−2.75692…
Δx2​=∣−2.75692…−(−2.50461…)∣=0.25230…Δx2​=0.25230…
x3​=−2.88307…:Δx3​=0.12615…
f(x2​)=(−2.75692…)2+6.01846…(−2.75692…)+9.05547…=0.06365…f′(x2​)=2(−2.75692…)+6.01846…=0.50461…x3​=−2.88307…
Δx3​=∣−2.88307…−(−2.75692…)∣=0.12615…Δx3​=0.12615…
x4​=−2.94615…:Δx4​=0.06307…
f(x3​)=(−2.88307…)2+6.01846…(−2.88307…)+9.05547…=0.01591…f′(x3​)=2(−2.88307…)+6.01846…=0.25230…x4​=−2.94615…
Δx4​=∣−2.94615…−(−2.88307…)∣=0.06307…Δx4​=0.06307…
x5​=−2.97769…:Δx5​=0.03153…
f(x4​)=(−2.94615…)2+6.01846…(−2.94615…)+9.05547…=0.00397…f′(x4​)=2(−2.94615…)+6.01846…=0.12615…x5​=−2.97769…
Δx5​=∣−2.97769…−(−2.94615…)∣=0.03153…Δx5​=0.03153…
x6​=−2.99346…:Δx6​=0.01576…
f(x5​)=(−2.97769…)2+6.01846…(−2.97769…)+9.05547…=0.00099…f′(x5​)=2(−2.97769…)+6.01846…=0.06307…x6​=−2.99346…
Δx6​=∣−2.99346…−(−2.97769…)∣=0.01576…Δx6​=0.01576…
x7​=−3.00134…:Δx7​=0.00788…
f(x6​)=(−2.99346…)2+6.01846…(−2.99346…)+9.05547…=0.00024…f′(x6​)=2(−2.99346…)+6.01846…=0.03153…x7​=−3.00134…
Δx7​=∣−3.00134…−(−2.99346…)∣=0.00788…Δx7​=0.00788…
x8​=−3.00528…:Δx8​=0.00394…
f(x7​)=(−3.00134…)2+6.01846…(−3.00134…)+9.05547…=0.00006…f′(x7​)=2(−3.00134…)+6.01846…=0.01576…x8​=−3.00528…
Δx8​=∣−3.00528…−(−3.00134…)∣=0.00394…Δx8​=0.00394…
x9​=−3.00725…:Δx9​=0.00197…
f(x8​)=(−3.00528…)2+6.01846…(−3.00528…)+9.05547…=0.00001…f′(x8​)=2(−3.00528…)+6.01846…=0.00788…x9​=−3.00725…
Δx9​=∣−3.00725…−(−3.00528…)∣=0.00197…Δx9​=0.00197…
x10​=−3.00824…:Δx10​=0.00098…
f(x9​)=(−3.00725…)2+6.01846…(−3.00725…)+9.05547…=3.88545E−6f′(x9​)=2(−3.00725…)+6.01846…=0.00394…x10​=−3.00824…
Δx10​=∣−3.00824…−(−3.00725…)∣=0.00098…Δx10​=0.00098…
x11​=−3.00873…:Δx11​=0.00049…
f(x10​)=(−3.00824…)2+6.01846…(−3.00824…)+9.05547…=9.71362E−7f′(x10​)=2(−3.00824…)+6.01846…=0.00197…x11​=−3.00873…
Δx11​=∣−3.00873…−(−3.00824…)∣=0.00049…Δx11​=0.00049…
x12​=−3.00898…:Δx12​=0.00024…
f(x11​)=(−3.00873…)2+6.01846…(−3.00873…)+9.05547…=2.4284E−7f′(x11​)=2(−3.00873…)+6.01846…=0.00098…x12​=−3.00898…
Δx12​=∣−3.00898…−(−3.00873…)∣=0.00024…Δx12​=0.00024…
x13​=−3.00910…:Δx13​=0.00012…
f(x12​)=(−3.00898…)2+6.01846…(−3.00898…)+9.05547…=6.071E−8f′(x12​)=2(−3.00898…)+6.01846…=0.00049…x13​=−3.00910…
Δx13​=∣−3.00910…−(−3.00898…)∣=0.00012…Δx13​=0.00012…
x14​=−3.00916…:Δx14​=0.00006…
f(x13​)=(−3.00910…)2+6.01846…(−3.00910…)+9.05547…=1.51774E−8f′(x13​)=2(−3.00910…)+6.01846…=0.00024…x14​=−3.00916…
Δx14​=∣−3.00916…−(−3.00910…)∣=0.00006…Δx14​=0.00006…
x15​=−3.00920…:Δx15​=0.00003…
f(x14​)=(−3.00916…)2+6.01846…(−3.00916…)+9.05547…=3.79428E−9f′(x14​)=2(−3.00916…)+6.01846…=0.00012…x15​=−3.00920…
Δx15​=∣−3.00920…−(−3.00916…)∣=0.00003…Δx15​=0.00003…
x16​=−3.00921…:Δx16​=0.00001…
f(x15​)=(−3.00920…)2+6.01846…(−3.00920…)+9.05547…=9.48491E−10f′(x15​)=2(−3.00920…)+6.01846…=0.00006…x16​=−3.00921…
Δx16​=∣−3.00921…−(−3.00920…)∣=0.00001…Δx16​=0.00001…
x17​=−3.00922…:Δx17​=7.69303E−6
f(x16​)=(−3.00921…)2+6.01846…(−3.00921…)+9.05547…=2.37044E−10f′(x16​)=2(−3.00921…)+6.01846…=0.00003…x17​=−3.00922…
Δx17​=∣−3.00922…−(−3.00921…)∣=7.69303E−6Δx17​=7.69303E−6
x18​=−3.00922…:Δx18​=3.83637E−6
f(x17​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=5.91829E−11f′(x17​)=2(−3.00922…)+6.01846…=0.00001…x18​=−3.00922…
Δx18​=∣−3.00922…−(−3.00922…)∣=3.83637E−6Δx18​=3.83637E−6
x19​=−3.00922…:Δx19​=1.89799E−6
f(x18​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=1.47171E−11f′(x18​)=2(−3.00922…)+6.01846…=7.75406E−6x19​=−3.00922…
Δx19​=∣−3.00922…−(−3.00922…)∣=1.89799E−6Δx19​=1.89799E−6
x20​=−3.00922…:Δx20​=9.10151E−7
f(x19​)=(−3.00922…)2+6.01846…(−3.00922…)+9.05547…=3.60245E−12f′(x19​)=2(−3.00922…)+6.01846…=3.95808E−6x20​=−3.00922…
Δx20​=∣−3.00922…−(−3.00922…)∣=9.10151E−7Δx20​=9.10151E−7
x≈−3.00922…
Aplicar la división larga Equation0:x+3.00922…x2+6.01846…x+9.05547…​=x+3.00923…
x+3.00923…≈0
x≈−3.00923…
Las soluciones sonx≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
x≈0.00923…,x≈0.00923…,x≈−3.00922…,x≈−3.00923…
Verificar las soluciones:x≈0.00923…Falso,x≈0.00923…Falso,x≈−3.00922…Falso,x≈−3.00923…Falso
Verificar las soluciones sustituyéndolas en 6x1−(63x​)2​+63x​1−(6x)2​=−1
Quitar las que no concuerden con la ecuación.
Sustituir x≈0.00923…:Falso
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=−1
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=0.99999…
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​
6⋅0.00923…1−(63⋅0.00923…​)2​=0.05538…0.00312…​
6⋅0.00923…1−(63⋅0.00923…​)2​
1−(63⋅0.00923…​)2​=0.00312…​
1−(63⋅0.00923…​)2​
(63⋅0.00923…​)2=0.99687…
(63⋅0.00923…​)2
Multiplicar los numeros: 3⋅0.00923…=0.02769…=(60.02769…​)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62(0.02769…​)2
(0.02769…​)2:0.02769…
Aplicar las leyes de los exponentes: a​=a21​=(0.02769…21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=0.02769…21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=0.02769…
=62⋅0.02769…
62=36=36⋅0.02769…
Multiplicar los numeros: 36⋅0.02769…=0.99687…=0.99687…
=1−0.99687…​
Restar: 1−0.99687…=0.00312…=0.00312…​
=6⋅0.00923…0.00312…​
Multiplicar los numeros: 6⋅0.00923…=0.05538…=0.05538…0.00312…​
63⋅0.00923…​1−(6⋅0.00923…)2​=60.02760…​
63⋅0.00923…​1−(6⋅0.00923…)2​
Multiplicar los numeros: 3⋅0.00923…=0.02769…=60.02769…​−(6⋅0.00923…)2+1​
1−(6⋅0.00923…)2​=0.99693…​
1−(6⋅0.00923…)2​
(6⋅0.00923…)2=0.00306…
(6⋅0.00923…)2
Multiplicar los numeros: 6⋅0.00923…=0.05538…=0.05538…2
0.05538…2=0.00306…=0.00306…
=1−0.00306…​
Restar: 1−0.00306…=0.99693…=0.99693…​
=60.02769…​0.99693…​
Aplicar las leyes de los exponentes: a​b​=a⋅b​0.02769…​0.99693…​=0.02769…⋅0.99693…​=60.02769…⋅0.99693…​
Multiplicar los numeros: 0.02769…⋅0.99693…=0.02760…=60.02760…​
=0.05538…0.00312…​+60.02760…​
0.05538…0.00312…​=0.00309…
0.05538…0.00312…​
0.00312…​=0.05592…=0.05538…⋅0.05592…
Multiplicar los numeros: 0.05538…⋅0.05592…=0.00309…=0.00309…
60.02760…​=0.99690…
60.02760…​
0.02760…​=0.16615…=6⋅0.16615…
Multiplicar los numeros: 6⋅0.16615…=0.99690…=0.99690…
=0.00309…+0.99690…
Sumar: 0.00309…+0.99690…=0.99999…=0.99999…
0.99999…=−1
Falso
Sustituir x≈0.00923…:Falso
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=−1
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​=0.99999…
6⋅0.00923…1−(63⋅0.00923…​)2​+63⋅0.00923…​1−(6⋅0.00923…)2​
6⋅0.00923…1−(63⋅0.00923…​)2​=0.05538…0.00300…​
6⋅0.00923…1−(63⋅0.00923…​)2​
1−(63⋅0.00923…​)2​=0.00300…​
1−(63⋅0.00923…​)2​
(63⋅0.00923…​)2=0.99699…
(63⋅0.00923…​)2
Multiplicar los numeros: 3⋅0.00923…=0.02769…=(60.02769…​)2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=62(0.02769…​)2
(0.02769…​)2:0.02769…
Aplicar las leyes de los exponentes: a​=a21​=(0.02769…21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=0.02769…21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=0.02769…
=62⋅0.02769…
62=36=36⋅0.02769…
Multiplicar los numeros: 36⋅0.02769…=0.99699…=0.99699…
=1−0.99699…​
Restar: 1−0.99699…=0.00300…=0.00300…​
=6⋅0.00923…0.00300…​
Multiplicar los numeros: 6⋅0.00923…=0.05538…=0.05538…0.00300…​
63⋅0.00923…​1−(6⋅0.00923…)2​=60.02760…​
63⋅0.00923…​1−(6⋅0.00923…)2​
Multiplicar los numeros: 3⋅0.00923…=0.02769…=60.02769…​−(6⋅0.00923…)2+1​
1−(6⋅0.00923…)2​=0.99693…​
1−(6⋅0.00923…)2​
(6⋅0.00923…)2=0.00306…
(6⋅0.00923…)2
Multiplicar los numeros: 6⋅0.00923…=0.05538…=0.05538…2
0.05538…2=0.00306…=0.00306…
=1−0.00306…​
Restar: 1−0.00306…=0.99693…=0.99693…​
=60.02769…​0.99693…​
Aplicar las leyes de los exponentes: a​b​=a⋅b​0.02769…​0.99693…​=0.02769…⋅0.99693…​=60.02769…⋅0.99693…​
Multiplicar los numeros: 0.02769…⋅0.99693…=0.02760…=60.02760…​
=0.05538…0.00300…​+60.02760…​
0.05538…0.00300…​=0.00303…
0.05538…0.00300…​
0.00300…​=0.05483…=0.05538…⋅0.05483…
Multiplicar los numeros: 0.05538…⋅0.05483…=0.00303…=0.00303…
60.02760…​=0.99696…
60.02760…​
0.02760…​=0.16616…=6⋅0.16616…
Multiplicar los numeros: 6⋅0.16616…=0.99696…=0.99696…
=0.00303…+0.99696…
Sumar: 0.00303…+0.99696…=0.99999…=0.99999…
0.99999…=−1
Falso
Sustituir x≈−3.00922…:Falso
6(−3.00922…)1−(63(−3.00922…)​)2​+63(−3.00922…)​1−(6(−3.00922…))2​=−1
6(−3.00922…)1−(63(−3.00922…)​)2​+63(−3.00922…)​1−(6(−3.00922…))2​=Sin definir
Sin definir=−1
Falso
Sustituir x≈−3.00923…:Falso
6(−3.00923…)1−(63(−3.00923…)​)2​+63(−3.00923…)​1−(6(−3.00923…))2​=−1
6(−3.00923…)1−(63(−3.00923…)​)2​+63(−3.00923…)​1−(6(−3.00923…))2​=Sin definir
Sin definir=−1
Falso
La solución esSinsolucioˊnparax∈R
Sinsolucioˊn
Verificar las soluciones sustituyendo en la ecuación original
Verificar las soluciones sustituyéndolas en arcsin(6x)+arcsin(63x​)=−2π​
Quitar las que no concuerden con la ecuación.
Sinsolucioˊnparax∈R

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

2cos^2(x)+sin(x)=5solvefor x,Y=0.5sin(3.07x-2.4t+0.59)sin(x-30)cos(x-30)=(sqrt(3))/4cos(θ)=-7/15 ,cos(θ/2),180<θ<270tan(x/2)=4
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024