Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(pi-x)=cos((3pi)/2-x)+cos(pi)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(π−x)=cos(23π​−x)+cos(π)

Lösung

x=67π​+2πn,x=611π​+2πn
+1
Grad
x=210∘+360∘n,x=330∘+360∘n
Schritte zur Lösung
sin(π−x)=cos(23π​−x)+cos(π)
cos(π)=−1
cos(π)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
=−1
sin(π−x)=cos(23π​−x)+−1
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(π−x)=cos(23π​−x)+−1
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(π−x)
Benutze die Winkel-Differenz-Identität: sin(s−t)=sin(s)cos(t)−cos(s)sin(t)=sin(π)cos(x)−cos(π)sin(x)
Vereinfache sin(π)cos(x)−cos(π)sin(x):sin(x)
sin(π)cos(x)−cos(π)sin(x)
sin(π)cos(x)=0
sin(π)cos(x)
Vereinfache sin(π):0
sin(π)
Verwende die folgende triviale Identität:sin(π)=0
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
=0⋅cos(x)
Wende Regel an 0⋅a=0=0
cos(π)sin(x)=−sin(x)
cos(π)sin(x)
Vereinfache cos(π):−1
cos(π)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=−1
=−1⋅sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=−sin(x)
=0−(−sin(x))
Fasse zusammen=sin(x)
=sin(x)
Benutze die Winkel-Differenz-Identität: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)=cos(23π​)cos(x)+sin(23π​)sin(x)
Vereinfache cos(23π​)cos(x)+sin(23π​)sin(x):−sin(x)
cos(23π​)cos(x)+sin(23π​)sin(x)
cos(23π​)cos(x)=0
cos(23π​)cos(x)
cos(23π​)=0
cos(23π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(π)cos(2π​)−sin(π)sin(2π​)
cos(23π​)
Schreibe cos(23π​)als cos(π+2π​)=cos(π+2π​)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(π)cos(2π​)−sin(π)sin(2π​)
=cos(π)cos(2π​)−sin(π)sin(2π​)
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:cos(2π​)=0
cos(2π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Verwende die folgende triviale Identität:sin(π)=0
sin(π)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
Verwende die folgende triviale Identität:sin(2π​)=1
sin(2π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=(−1)⋅0−0⋅1
Vereinfache=0
=0⋅cos(x)
Wende Regel an 0⋅a=0=0
sin(23π​)sin(x)=−sin(x)
sin(23π​)sin(x)
sin(23π​)=−1
sin(23π​)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:sin(π)cos(2π​)+cos(π)sin(2π​)
sin(23π​)
Schreibe sin(23π​)als sin(π+2π​)=sin(π+2π​)
Benutze die Identität der Winkelsumme: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(π)cos(2π​)+cos(π)sin(2π​)
=sin(π)cos(2π​)+cos(π)sin(2π​)
Verwende die folgende triviale Identität:sin(π)=0
sin(π)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=0
Verwende die folgende triviale Identität:cos(2π​)=0
cos(2π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=0
Verwende die folgende triviale Identität:cos(π)=(−1)
cos(π)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=(−1)
Verwende die folgende triviale Identität:sin(2π​)=1
sin(2π​)
sin(x) Periodizitätstabelle mit 2πn Zyklus:
=1
=0⋅0+(−1)⋅1
Vereinfache=−1
=−1⋅sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=−sin(x)
=0−sin(x)
0−sin(x)=−sin(x)=−sin(x)
=−sin(x)
sin(x)=−sin(x)−1
sin(x)=−sin(x)−1
Subtrahiere −sin(x)−1 von beiden Seiten2sin(x)+1=0
Verschiebe 1auf die rechte Seite
2sin(x)+1=0
Subtrahiere 1 von beiden Seiten2sin(x)+1−1=0−1
Vereinfache2sin(x)=−1
2sin(x)=−1
Teile beide Seiten durch 2
2sin(x)=−1
Teile beide Seiten durch 222sin(x)​=2−1​
Vereinfachesin(x)=−21​
sin(x)=−21​
Allgemeine Lösung für sin(x)=−21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

4csc(x)+8=0sin((3pi)/2-2x)=sin(x)solvefor α,sin(α)-sin(β)=cos(β)-cos(α)sin(2x)=sqrt(3)cos(2x+15)=0.3
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-ErweiterungSymbolab Math Solver API
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenAGB'sCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024