פתרונות
מחשבון אינטגרליםמחשבון נגזרתמחשבון אלגברהמחשבון מטריצותיותר...
גרפים
גרף קוויםגרף אקספוננציאליגרף ריבועיגרף סינוסיותר...
מחשבונים
מחשבון BMIמחשבון ריבית דריביתמחשבון אחוזיםמחשבון האצהיותר...
גאומטריה
מחשבון משפט פיתגורסמחשבון שטח מעגלמחשבון משולש שווה שוקייםמחשבון משולשיםיותר...
AI Chat
כלים
מחברתקבוצותשליפיםדפי עבודהתרגולאימות
he
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
פּוֹפּוּלָרִי טריגונומטריה >

6cos(3x)=6cos(x)

  • טרום אלגברה
  • אלגברה
  • טרום חשבון אינפיטיסמלי
  • חשבון אינפיטסימלי
  • פונקציות
  • אלגברה לינארית
  • טריגונומטריה
  • סטטיסטיקה

פתרון

6cos(3x)=6cos(x)

פתרון

x=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn
+1
מעלות
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n,x=0∘+360∘n
צעדי פתרון
6cos(3x)=6cos(x)
משני האגפים 6cos(x)החסר6cos(3x)−6cos(x)=0
Rewrite using trig identities
6cos(3x)−6cos(x)
cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Rewrite using trig identities
cos(3x)
כתוב מחדש בתור=cos(2x+x)
cos(s+t)=cos(s)cos(t)−sin(s)sin(t) :הפעל זהות של סכום זוויות=cos(2x)cos(x)−sin(2x)sin(x)
sin(2x)=2sin(x)cos(x) :הפעל זהות של זווית כפולה=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)פשט את:cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
ab⋅ac=ab+c :הפעל את חוק החזקותsin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
1+1=2:חבר את המספרים=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)=2cos2(x)−1 :הפעל זהות של זווית כפולה=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
cos2(x)+sin2(x)=1 :הפעל זהות פיטגוריתsin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)הרחב את:4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
cos(x)(2cos2(x)−1)הרחב את:2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
a(b−c)=ab−ac : פתח סוגריים בעזרתa=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)−1⋅cos(x)פשט את:2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
ab⋅ac=ab+c :הפעל את חוק החזקותcos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
2+1=3:חבר את המספרים=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
1⋅cos(x)=cos(x):הכפל=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
−2cos(x)(1−cos2(x))הרחב את:−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
a(b−c)=ab−ac : פתח סוגריים בעזרתa=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
הפעל חוקי מינוס-פלוס−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
−2⋅1⋅cos(x)+2cos2(x)cos(x)פשט את:−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
2⋅1=2:הכפל את המספרים=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
ab⋅ac=ab+c :הפעל את חוק החזקותcos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
2+1=3:חבר את המספרים=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)פשט את:4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
קבץ ביטויים דומים יחד=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
2cos3(x)+2cos3(x)=4cos3(x):חבר איברים דומים=4cos3(x)−cos(x)−2cos(x)
−cos(x)−2cos(x)=−3cos(x):חבר איברים דומים=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=6(4cos3(x)−3cos(x))−6cos(x)
6(4cos3(x)−3cos(x))−6cos(x)פשט את:24cos3(x)−24cos(x)
6(4cos3(x)−3cos(x))−6cos(x)
6(4cos3(x)−3cos(x))הרחב את:24cos3(x)−18cos(x)
6(4cos3(x)−3cos(x))
a(b−c)=ab−ac : פתח סוגריים בעזרתa=6,b=4cos3(x),c=3cos(x)=6⋅4cos3(x)−6⋅3cos(x)
6⋅4cos3(x)−6⋅3cos(x)פשט את:24cos3(x)−18cos(x)
6⋅4cos3(x)−6⋅3cos(x)
6⋅4=24:הכפל את המספרים=24cos3(x)−6⋅3cos(x)
6⋅3=18:הכפל את המספרים=24cos3(x)−18cos(x)
=24cos3(x)−18cos(x)
=24cos3(x)−18cos(x)−6cos(x)
−18cos(x)−6cos(x)=−24cos(x):חבר איברים דומים=24cos3(x)−24cos(x)
=24cos3(x)−24cos(x)
−24cos(x)+24cos3(x)=0
בעזרת שיטת ההצבה
−24cos(x)+24cos3(x)=0
cos(x)=u:נניח ש−24u+24u3=0
−24u+24u3=0:u=0,u=−1,u=1
−24u+24u3=0
−24u+24u3פרק לגורמים את:24u(u+1)(u−1)
−24u+24u3
24uהוצא את הגורם המשותף:24u(u2−1)
24u3−24u
ab+c=abac :הפעל את חוק החזקותu3=u2u=24u2u−24u
24uהוצא את הגורם המשותף=24u(u2−1)
=24u(u2−1)
u2−1פרק לגורמים את:(u+1)(u−1)
u2−1
12בתור 1כתוב מחדש את=u2−12
x2−y2=(x+y)(x−y)הפעל את חוק הפרש הריבועיםu2−12=(u+1)(u−1)=(u+1)(u−1)
=24u(u+1)(u−1)
24u(u+1)(u−1)=0
פתור על ידי השוואת הגורמים לאפסu=0oru+1=0oru−1=0
u+1=0פתור את:u=−1
u+1=0
לצד ימין 1העבר
u+1=0
משני האגפים 1החסרu+1−1=0−1
פשטu=−1
u=−1
u−1=0פתור את:u=1
u−1=0
לצד ימין 1העבר
u−1=0
לשני האגפים 1הוסףu−1+1=0+1
פשטu=1
u=1
The solutions areu=0,u=−1,u=1
u=cos(x)החלף בחזרהcos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0,cos(x)=−1,cos(x)=1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
cos(x)=0:פתרונות כלליים עבור
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
cos(x)=−1:פתרונות כלליים עבור
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
cos(x)=1:x=2πn
cos(x)=1
cos(x)=1:פתרונות כלליים עבור
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
x=0+2πnפתור את:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
אחד את הפתרונותx=2π​+2πn,x=23π​+2πn,x=π+2πn,x=2πn

גרף

Sorry, your browser does not support this application
הצג גרף אינטראקטיבי

דוגמאות פופולריות

4cos(x)=-2sqrt(2)tan(θ)=(0.15)/(0.5)arctan(x/(12))-arctan(x)=0.0012=2cos(pi+x)cot(x)+csc(x)cos(x)=2,cot(x)
כלי לימודפותר מתמטיקה בינה מלאכותיתAI Chatדפי עבודהתרגולשליפיםמחשבוניםמחשבון גרפימחשבון גאומטריהאמת פתרון
אפליקציותאפליקציית Symbolab (Android)מחשבון גרפי (Android)תרגול (Android)אפליקציית Symbolab (iOS)מחשבון גרפי (iOS)תרגול (iOS)תוסף ChromeSymbolab Math Solver API
חֶברָהעל Symbolabבלוגעזרה
משפטיפרטיותלתנאיםמדיניות קובצי Cookieהגדרות עוגיותאל תמכור או תשתף את המידע האישי שליזכויות יוצרים, הנחיות קהילה, DSA ומשאבים משפטיים אחריםמרכז משפטי Learneo
מדיה חברתית
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024