Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen (csc(x)+1)/(cot(x)+cos(x))=sec(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen cot(x)+cos(x)csc(x)+1​=sec(x)

Lösung

Wahr
Schritte zur Lösung
cot(x)+cos(x)csc(x)+1​=sec(x)
Manipuliere die linke Seitecot(x)+cos(x)csc(x)+1​
Drücke mit sin, cos aus
cos(x)+cot(x)1+csc(x)​
Verwende die grundlegende trigonometrische Identität: csc(x)=sin(x)1​=cos(x)+cot(x)1+sin(x)1​​
Verwende die grundlegende trigonometrische Identität: cot(x)=sin(x)cos(x)​=cos(x)+sin(x)cos(x)​1+sin(x)1​​
Vereinfache cos(x)+sin(x)cos(x)​1+sin(x)1​​:cos(x)1​
cos(x)+sin(x)cos(x)​1+sin(x)1​​
Füge cos(x)+sin(x)cos(x)​zusammen:sin(x)cos(x)sin(x)+cos(x)​
cos(x)+sin(x)cos(x)​
Wandle das Element in einen Bruch um: cos(x)=sin(x)cos(x)sin(x)​=sin(x)cos(x)sin(x)​+sin(x)cos(x)​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=sin(x)cos(x)sin(x)+cos(x)​
=sin(x)cos(x)sin(x)+cos(x)​1+sin(x)1​​
Füge 1+sin(x)1​zusammen:sin(x)sin(x)+1​
1+sin(x)1​
Wandle das Element in einen Bruch um: 1=sin(x)1sin(x)​=sin(x)1⋅sin(x)​+sin(x)1​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=sin(x)1⋅sin(x)+1​
Multipliziere: 1⋅sin(x)=sin(x)=sin(x)sin(x)+1​
=sin(x)cos(x)sin(x)+cos(x)​sin(x)sin(x)+1​​
Teile Brüche: dc​ba​​=b⋅ca⋅d​=sin(x)(cos(x)sin(x)+cos(x))(sin(x)+1)sin(x)​
Streiche die gemeinsamen Faktoren: sin(x)=cos(x)sin(x)+cos(x)sin(x)+1​
Klammere gleiche Terme aus cos(x)=cos(x)(sin(x)+1)sin(x)+1​
Streiche die gemeinsamen Faktoren: sin(x)+1=cos(x)1​
=cos(x)1​
=cos(x)1​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
Verwende die grundlegende trigonometrische Identität: cos(x)=sec(x)1​sec(x)1​1​
Vereinfache
sec(x)1​1​
Wende Bruchregel an: cb​1​=bc​=1sec(x)​
Wende Regel an 1a​=a=sec(x)
sec(x)
sec(x)
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen csc^2(θ/2)= 2/(1-cos(θ))provecsc2(2θ​)=1−cos(θ)2​beweisen sec(x)cos(x)+tan^2(x)=sec^2(x)provesec(x)cos(x)+tan2(x)=sec2(x)beweisen cot^2(θ)+1= 1/(sin^2(θ))provecot2(θ)+1=sin2(θ)1​beweisen 3cos(2x+pi/2)-2=6cos^2(x+pi/4)prove3cos(2x+2π​)−2=6cos2(x+4π​)beweisen cos^4(b)-sin^4(b)=cos(2b)provecos4(b)−sin4(b)=cos(2b)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024