Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

dimostrare csc^2(x)sec^2(x)=sec^2(x)+csc^2(x)

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

dimostrare csc2(x)sec2(x)=sec2(x)+csc2(x)

Soluzione

Vero
Fasi della soluzione
csc2(x)sec2(x)=sec2(x)+csc2(x)
Manipolando il lato destrosec2(x)+csc2(x)
Esprimere con sen e cos
csc2(x)+sec2(x)
Usare l'identità trigonometrica di base: csc(x)=sin(x)1​=(sin(x)1​)2+sec2(x)
Usare l'identità trigonometrica di base: sec(x)=cos(x)1​=(sin(x)1​)2+(cos(x)1​)2
Semplifica (sin(x)1​)2+(cos(x)1​)2:sin2(x)cos2(x)cos2(x)+sin2(x)​
(sin(x)1​)2+(cos(x)1​)2
(sin(x)1​)2=sin2(x)1​
(sin(x)1​)2
Applica la regola degli esponenti: (ba​)c=bcac​=sin2(x)12​
Applicare la regola 1a=112=1=sin2(x)1​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Applica la regola degli esponenti: (ba​)c=bcac​=cos2(x)12​
Applicare la regola 1a=112=1=cos2(x)1​
=sin2(x)1​+cos2(x)1​
Minimo Comune Multiplo di sin2(x),cos2(x):sin2(x)cos2(x)
sin2(x),cos2(x)
Minimo comune multiplo (mcm)
Calcolo di un'espressione composta da fattori che compaiono in sin2(x) o cos2(x)=sin2(x)cos2(x)
Adeguare le frazioni in base al minimo comune multiplo (mcm)
Moltiplicare ogni numeratore per la stessa quantità necessaria a moltiplicare il suo
corrispondente denominatore per trasformarlo in mcm sin2(x)cos2(x)
Per sin2(x)1​:moltiplica il numeratore e il denominatore per cos2(x)sin2(x)1​=sin2(x)cos2(x)1⋅cos2(x)​=sin2(x)cos2(x)cos2(x)​
Per cos2(x)1​:moltiplica il numeratore e il denominatore per sin2(x)cos2(x)1​=cos2(x)sin2(x)1⋅sin2(x)​=sin2(x)cos2(x)sin2(x)​
=sin2(x)cos2(x)cos2(x)​+sin2(x)cos2(x)sin2(x)​
Poiché i denominatori sono uguali, combinare le frazioni: ca​±cb​=ca±b​=sin2(x)cos2(x)cos2(x)+sin2(x)​
=sin2(x)cos2(x)cos2(x)+sin2(x)​
=cos2(x)sin2(x)cos2(x)+sin2(x)​
Riscrivere utilizzando identità trigonometriche
cos2(x)sin2(x)cos2(x)+sin2(x)​
Usa l'identità pitagorica: cos2(x)+sin2(x)=1=cos2(x)sin2(x)1​
=cos2(x)sin2(x)1​
Riscrivere utilizzando identità trigonometriche
Usare l'identità trigonometrica di base: sin(x)=csc(x)1​cos2(x)(csc(x)1​)21​
Usare l'identità trigonometrica di base: cos(x)=sec(x)1​(sec(x)1​)2(csc(x)1​)21​
Semplificare
(sec(x)1​)2(csc(x)1​)21​
(sec(x)1​)2=sec2(x)1​
(sec(x)1​)2
Applica la regola degli esponenti: (ba​)c=bcac​=sec2(x)12​
Applicare la regola 1a=112=1=sec2(x)1​
=(csc(x)1​)2sec2(x)1​1​
(csc(x)1​)2=csc2(x)1​
(csc(x)1​)2
Applica la regola degli esponenti: (ba​)c=bcac​=csc2(x)12​
Applicare la regola 1a=112=1=csc2(x)1​
=sec2(x)1​⋅csc2(x)1​1​
Moltiplicare sec2(x)1​⋅csc2(x)1​:sec2(x)csc2(x)1​
sec2(x)1​⋅csc2(x)1​
Moltiplica le frazioni: ba​⋅dc​=b⋅da⋅c​=sec2(x)csc2(x)1⋅1​
Moltiplica i numeri: 1⋅1=1=sec2(x)csc2(x)1​
=sec2(x)csc2(x)1​1​
Applica la regola delle frazioni: cb​1​=bc​=1sec2(x)csc2(x)​
Applicare la regola 1a​=a=sec2(x)csc2(x)
sec2(x)csc2(x)
sec2(x)csc2(x)
=csc2(x)sec2(x)
Abbiamo mostrato che i due lati possono prendere la stessa forma⇒Vero

Esempi popolari

dimostrare (sin(x)+cos(x))/(cos(x))=1+tan(x)provecos(x)sin(x)+cos(x)​=1+tan(x)dimostrare (1+sin(-x))/(cos(x)tan(x)-1)=-1provecos(x)tan(x)−11+sin(−x)​=−1dimostrare sec(A)-(cos(A))/(1+sin(A))=tan(A)provesec(A)−1+sin(A)cos(A)​=tan(A)dimostrare (1-tan^2(A))/(1+tan^2(A))=cos(2A)prove1+tan2(A)1−tan2(A)​=cos(2A)dimostrare sin(pi/3)=cos(pi/6)provesin(3π​)=cos(6π​)
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024