Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sqrt(3)cos(4x)+sin(4x)>sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3​cos(4x)+sin(4x)>2​

Solution

NoSolutionforx∈R
Solution steps
3​cos(4x)+sin(4x)>2​
Let: u=4x3​cos(u)+sin(u)>2​
3​cos(u)+sin(u)>2​:−12π​+2πn<u<125π​+2πn
3​cos(u)+sin(u)>2​
Rewrite using trig identities
Divide both sides by 223​cos(u)+sin(u)​>22​​
Expand 23​cos(u)+sin(u)​:23​​cos(u)+21​sin(u)
23​cos(u)+sin(u)​
Apply the fraction rule: ca±b​=ca​±cb​23​cos(u)+sin(u)​=23​cos(u)​+2sin(u)​=23​cos(u)​+2sin(u)​
=23​​cos(u)+21​sin(u)
23​​cos(u)+21​sin(u)>22​​
23​​=sin(3π​)sin(3π​)cos(u)+21​sin(u)>22​​
21​=cos(3π​)sin(3π​)cos(u)+cos(3π​)sin(u)>22​​
Use the following identity: cos(s)sin(t)+cos(t)sin(s)=sin(s+t)sin(3π​+u)>22​​
sin(3π​+u)>22​​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(22​​)+2πn<(3π​+u)<π−arcsin(22​​)+2πn
If a<u<bthen a<uandu<barcsin(22​​)+2πn<3π​+uand3π​+u<π−arcsin(22​​)+2πn
arcsin(22​​)+2πn<3π​+u:u>2πn−12π​
arcsin(22​​)+2πn<3π​+u
Switch sides3π​+u>arcsin(22​​)+2πn
Simplify arcsin(22​​)+2πn:4π​+2πn
arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​+2πn
3π​+u>4π​+2πn
Move 3π​to the right side
3π​+u>4π​+2πn
Subtract 3π​ from both sides3π​+u−3π​>4π​+2πn−3π​
Simplify
3π​+u−3π​>4π​+2πn−3π​
Simplify 3π​+u−3π​:u
3π​+u−3π​
Add similar elements: 3π​−3π​>0
=u
Simplify 4π​+2πn−3π​:2πn−12π​
4π​+2πn−3π​
Group like terms=2πn+4π​−3π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=12π3​−12π4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3−π4​
Add similar elements: 3π−4π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=2πn−12π​
u>2πn−12π​
u>2πn−12π​
u>2πn−12π​
3π​+u<π−arcsin(22​​)+2πn:u<125π​+2πn
3π​+u<π−arcsin(22​​)+2πn
Simplify π−arcsin(22​​)+2πn:π−4π​+2πn
π−arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−4π​+2πn
3π​+u<π−4π​+2πn
Move 3π​to the right side
3π​+u<π−4π​+2πn
Subtract 3π​ from both sides3π​+u−3π​<π−4π​+2πn−3π​
Simplify
3π​+u−3π​<π−4π​+2πn−3π​
Simplify 3π​+u−3π​:u
3π​+u−3π​
Add similar elements: 3π​−3π​<0
=u
Simplify π−4π​+2πn−3π​:π+2πn−127π​
π−4π​+2πn−3π​
Group like terms=π+2πn−4π​−3π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=−12π3​−12π4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3−π4​
Add similar elements: −3π−4π=−7π=12−7π​
Apply the fraction rule: b−a​=−ba​=π+2πn−127π​
u<π+2πn−127π​
u<π+2πn−127π​
u<π+2πn−127π​
Simplify π−127π​:125π​
π−127π​
Convert element to fraction: π=12π12​=12π12​−127π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π12−7π​
Add similar elements: 12π−7π=5π=125π​
u<125π​+2πn
Combine the intervalsu>2πn−12π​andu<125π​+2πn
Merge Overlapping Intervals−12π​+2πn<u<125π​+2πn
−12π​+2πn<u<125π​+2πn
Substitute back 4x=u−12π​+2πn<4x<125π​+2πn
−12π​+2πn<4x<125π​+2πn:False for all x∈R
−12π​+2πn<4x<125π​+2πn
If a<u<bthen a<uandu<b−12π​+2πn<4xand4x<125π​+2πn
−12π​+2πn<4x:x>−48π​+2πn​
−12π​+2πn<4x
Switch sides4x>−12π​+2πn
Divide both sides by 4
4x>−12π​+2πn
Divide both sides by 444x​>−412π​​+42πn​
Simplify
44x​>−412π​​+42πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify −412π​​+42πn​:−48π​+2πn​
−412π​​+42πn​
412π​​=48π​
412π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅4π​
Multiply the numbers: 12⋅4=48=48π​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
=−48π​+2πn​
x>−48π​+2πn​
x>−48π​+2πn​
x>−48π​+2πn​
4x<125π​+2πn:x<485π​+2πn​
4x<125π​+2πn
Divide both sides by 4
4x<125π​+2πn
Divide both sides by 444x​<4125π​​+42πn​
Simplify
44x​<4125π​​+42πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4125π​​+42πn​:485π​+2πn​
4125π​​+42πn​
4125π​​=485π​
4125π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅45π​
Multiply the numbers: 12⋅4=48=485π​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
=485π​+2πn​
x<485π​+2πn​
x<485π​+2πn​
x<485π​+2πn​
Combine the intervalsx>−48π​+2π​nandx<485π​+2π​n
Merge Overlapping IntervalsFalseforallx∈R
NoSolutionforx∈R

Popular Examples

sin(5x)>5,0<= x<= 2pi-cos(x)<=-sin(2x)cos(y)>-12cos(x)+cos^2(x)>0tan(x)>-2/3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024