Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((x*pi}{(\frac{1+sqrt(5))/2)^2})>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin​(21+5​​)2x⋅π​​>0

Solution

(3+5​)n<x<23+5​​+(3+5​)n
+2
Interval Notation
((3+5​)n,23+5​​+(3+5​)n)
Decimal
(3+5​)n<x<2.61803…+(3+5​)n
Solution steps
sin​(21+5​​)2xπ​​>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<(21+5​​)2xπ​<π−arcsin(0)+2πn
If a<u<bthen a<uandu<barcsin(0)+2πn<(21+5​​)2xπ​and(21+5​​)2xπ​<π−arcsin(0)+2πn
arcsin(0)+2πn<(21+5​​)2xπ​:x>(3+5​)n
arcsin(0)+2πn<(21+5​​)2xπ​
Switch sides(21+5​​)2xπ​>arcsin(0)+2πn
Simplify arcsin(0)+2πn:2πn
arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0+2πn
0+2πn=2πn=2πn
(21+5​​)2xπ​>2πn
Multiply both sides by (21+5​​)2
(21+5​​)2xπ​>2πn
Multiply both sides by (21+5​​)2(21+5​​)2xπ(21+5​​)2​>2πn(21+5​​)2
Simplify
(21+5​​)2xπ(21+5​​)2​>2πn(21+5​​)2
Simplify (21+5​​)2xπ(21+5​​)2​:πx
(21+5​​)2xπ(21+5​​)2​
Cancel the common factor: (21+5​​)2=πx
Simplify 2πn(21+5​​)2:π(3+5​)n
2πn(21+5​​)2
(21+5​​)2=23+5​​
(21+5​​)2
Apply exponent rule: (ba​)c=bcac​=22(1+5​)2​
(1+5​)2=6+25​
(1+5​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1,b=5​
=12+2⋅1⋅5​+(5​)2
Simplify 12+2⋅1⋅5​+(5​)2:6+25​
12+2⋅1⋅5​+(5​)2
Apply rule 1a=112=1=1+2⋅1⋅5​+(5​)2
2⋅1⋅5​=25​
2⋅1⋅5​
Multiply the numbers: 2⋅1=2=25​
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=1+25​+5
Add the numbers: 1+5=6=6+25​
=6+25​
=226+25​​
Factor 6+25​:2(3+5​)
6+25​
Rewrite as=2⋅3+25​
Factor out common term 2=2(3+5​)
=222(3+5​)​
Cancel the common factor: 2=23+5​​
=2π23+5​​n
Multiply fractions: a⋅cb​=ca⋅b​=22π(3+5​)​n
Cancel the common factor: 2=n(3+5​)π
πx>π(3+5​)n
πx>π(3+5​)n
πx>π(3+5​)n
Divide both sides by π
πx>π(3+5​)n
Divide both sides by πππx​>ππ(3+5​)n​
Simplifyx>(3+5​)n
x>(3+5​)n
(21+5​​)2xπ​<π−arcsin(0)+2πn:x<23+5​​+(3+5​)n
(21+5​​)2xπ​<π−arcsin(0)+2πn
Simplify π−arcsin(0)+2πn:π+2πn
π−arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0+2πn
π−0+2πn=π+2πn=π+2πn
(21+5​​)2xπ​<π+2πn
Multiply both sides by (21+5​​)2
(21+5​​)2xπ​<π+2πn
Multiply both sides by (21+5​​)2(21+5​​)2xπ(21+5​​)2​<π(21+5​​)2+2πn(21+5​​)2
Simplify
(21+5​​)2xπ(21+5​​)2​<π(21+5​​)2+2πn(21+5​​)2
Simplify (21+5​​)2xπ(21+5​​)2​:πx
(21+5​​)2xπ(21+5​​)2​
Cancel the common factor: (21+5​​)2=πx
Simplify π(21+5​​)2+2πn(21+5​​)2:2π(3+5​)​+π(3+5​)n
π(21+5​​)2+2πn(21+5​​)2
π(21+5​​)2=2π(3+5​)​
π(21+5​​)2
(21+5​​)2=23+5​​
(21+5​​)2
Apply exponent rule: (ba​)c=bcac​=22(1+5​)2​
(1+5​)2=6+25​
(1+5​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1,b=5​
=12+2⋅1⋅5​+(5​)2
Simplify 12+2⋅1⋅5​+(5​)2:6+25​
12+2⋅1⋅5​+(5​)2
Apply rule 1a=112=1=1+2⋅1⋅5​+(5​)2
2⋅1⋅5​=25​
2⋅1⋅5​
Multiply the numbers: 2⋅1=2=25​
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=1+25​+5
Add the numbers: 1+5=6=6+25​
=6+25​
=226+25​​
Factor 6+25​:2(3+5​)
6+25​
Rewrite as=2⋅3+25​
Factor out common term 2=2(3+5​)
=222(3+5​)​
Cancel the common factor: 2=23+5​​
=π23+5​​
Multiply fractions: a⋅cb​=ca⋅b​=2(3+5​)π​
2πn(21+5​​)2=π(3+5​)n
2πn(21+5​​)2
(21+5​​)2=23+5​​
(21+5​​)2
Apply exponent rule: (ba​)c=bcac​=22(1+5​)2​
(1+5​)2=6+25​
(1+5​)2
Apply Perfect Square Formula: (a+b)2=a2+2ab+b2a=1,b=5​
=12+2⋅1⋅5​+(5​)2
Simplify 12+2⋅1⋅5​+(5​)2:6+25​
12+2⋅1⋅5​+(5​)2
Apply rule 1a=112=1=1+2⋅1⋅5​+(5​)2
2⋅1⋅5​=25​
2⋅1⋅5​
Multiply the numbers: 2⋅1=2=25​
(5​)2=5
(5​)2
Apply radical rule: a​=a21​=(521​)2
Apply exponent rule: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=5
=1+25​+5
Add the numbers: 1+5=6=6+25​
=6+25​
=226+25​​
Factor 6+25​:2(3+5​)
6+25​
Rewrite as=2⋅3+25​
Factor out common term 2=2(3+5​)
=222(3+5​)​
Cancel the common factor: 2=23+5​​
=2π23+5​​n
Multiply fractions: a⋅cb​=ca⋅b​=22π(3+5​)​n
Cancel the common factor: 2=n(3+5​)π
=2π(3+5​)​+π(3+5​)n
πx<2π(3+5​)​+π(3+5​)n
πx<2π(3+5​)​+π(3+5​)n
πx<2π(3+5​)​+π(3+5​)n
Divide both sides by π
πx<2π(3+5​)​+π(3+5​)n
Divide both sides by πππx​<π2π(3+5​)​​+ππ(3+5​)n​
Simplify
ππx​<π2π(3+5​)​​+ππ(3+5​)n​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π2π(3+5​)​​+ππ(3+5​)n​:23+5​​+(3+5​)n
π2π(3+5​)​​+ππ(3+5​)n​
π2π(3+5​)​​=23+5​​
π2π(3+5​)​​
Apply the fraction rule: acb​​=c⋅ab​=2ππ(3+5​)​
Cancel the common factor: π=23+5​​
ππ(3+5​)n​=(3+5​)n
ππ(3+5​)n​
Cancel the common factor: π=(3+5​)n
=23+5​​+(3+5​)n
x<23+5​​+(3+5​)n
x<23+5​​+(3+5​)n
x<23+5​​+(3+5​)n
Combine the intervalsx>(3+5​)nandx<23+5​​+(3+5​)n
Merge Overlapping Intervals(3+5​)n<x<23+5​​+(3+5​)n

Popular Examples

2sin(x)-sqrt(3)<= 0cos(x)<=-(sqrt(2))/2(2+sqrt(3)sin(x))<02cos(x)-1>0sin(2x)-cos(2x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024