Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(x)cos(x)>cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(x)cos(x)>cos(x)

Solution

6π​+2πn<x<2π​+2πnor65π​+2πn<x<23π​+2πn
+2
Interval Notation
(6π​+2πn,2π​+2πn)∪(65π​+2πn,23π​+2πn)
Decimal
0.52359…+2πn<x<1.57079…+2πnor2.61799…+2πn<x<4.71238…+2πn
Solution steps
2sin(x)cos(x)>cos(x)
Move cos(x)to the left side
2sin(x)cos(x)>cos(x)
Subtract cos(x) from both sides2sin(x)cos(x)−cos(x)>cos(x)−cos(x)
2sin(x)cos(x)−cos(x)>0
2sin(x)cos(x)−cos(x)>0
Periodicity of 2sin(x)cos(x)−cos(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2sin(x)cos(x),cos(x)
Periodicity of 2sin(x)cos(x):π
2sin(x)cos(x)is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:π
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
Combine periods: π,2π
=2π
Factor 2sin(x)cos(x)−cos(x):cos(x)(2sin(x)−1)
2sin(x)cos(x)−cos(x)
Factor out common term cos(x)=cos(x)(2sin(x)−1)
cos(x)(2sin(x)−1)>0
To find the zeroes, set the inequality to zerocos(x)(2sin(x)−1)=0
Solve cos(x)(2sin(x)−1)=0for 0≤x<2π
cos(x)(2sin(x)−1)=0
Solving each part separately
cos(x)=0:x=2π​orx=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
2sin(x)−1=0:x=6π​orx=65π​
2sin(x)−1=0,0≤x<2π
Move 1to the right side
2sin(x)−1=0
Add 1 to both sides2sin(x)−1+1=0+1
Simplify2sin(x)=1
2sin(x)=1
Divide both sides by 2
2sin(x)=1
Divide both sides by 222sin(x)​=21​
Simplifysin(x)=21​
sin(x)=21​
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Solutions for the range 0≤x<2πx=6π​,x=65π​
Combine all the solutions6π​or2π​or65π​or23π​
The intervals between the zeros0<x<6π​,6π​<x<2π​,2π​<x<65π​,65π​<x<23π​,23π​<x<2π
Summarize in a table:cos(x)2sin(x)−1cos(x)(2sin(x)−1)​x=0+−−​0<x<6π​+−−​x=6π​+00​6π​<x<2π​+++​x=2π​0+0​2π​<x<65π​−+−​x=65π​−00​65π​<x<23π​−−+​x=23π​0−0​23π​<x<2π+−−​x=2π+−−​​
Identify the intervals that satisfy the required condition: >06π​<x<2π​or65π​<x<23π​
Apply the periodicity of 2sin(x)cos(x)−cos(x)6π​+2πn<x<2π​+2πnor65π​+2πn<x<23π​+2πn

Popular Examples

tan(θ)<= sqrt(3)1-4(cos(x)sin(x/2))>= 0-1<= arccos(x^2)2sin(5x)<= sqrt(2)(2cos(x)-sqrt(3))>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024