Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)+cos^2(x)<= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)+cos2(x)≤1

Solution

x=2π​+2πnor−π+2πn≤x≤2πn
+2
Interval Notation
x=2π​+2πn∪[−π+2πn,2πn]
Decimal
x=1.57079…+2πnor−3.14159…+2πn≤x≤2πn
Solution steps
sin(x)+cos2(x)≤1
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)sin(x)+1−sin2(x)≤1
Let: u=sin(x)u+1−u2≤1
u+1−u2≤1:u≤0oru≥1
u+1−u2≤1
Rewrite in standard form
u+1−u2≤1
Subtract 1 from both sidesu+1−u2−1≤1−1
Simplify−u2+u≤0
−u2+u≤0
Factor −u2+u:−u(u−1)
−u2+u
Apply exponent rule: ab+c=abacu2=uu=−uu+u
Factor out common term −u=−u(u−1)
−u(u−1)≤0
Multiply both sides by −1 (reverse the inequality)(−u(u−1))(−1)≥0⋅(−1)
Simplifyu(u−1)≥0
Identify the intervals
Find the signs of the factors of u(u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:uu−1u(u−1)​u<0−−+​u=00−0​0<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: ≥0u<0oru=0oru=1oru>1
Merge Overlapping Intervals
u≤0oru=1oru>1
The union of two intervals is the set of numbers which are in either interval
u<0oru=0
u≤0
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1
u≤0oru=1
The union of two intervals is the set of numbers which are in either interval
u≤0oru=1oru>1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
u≤0oru≥1
Substitute back u=sin(x)sin(x)≤0orsin(x)≥1
sin(x)≤0:−π+2πn≤x≤2πn
sin(x)≤0
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(0)+2πn≤x≤arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn≤x≤0+2πn
Simplify−π+2πn≤x≤2πn
sin(x)≥1:x=2π​+2πn
sin(x)≥1
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(1)+2πn≤x≤π−arcsin(1)+2πn
Simplify arcsin(1):2π​
arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=2π​
Simplify π−arcsin(1):2π​
π−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−2π​
Simplify
π−2π​
Convert element to fraction: π=2π2​=2π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2π2−π​
Add similar elements: 2π−π=π=2π​
=2π​
2π​+2πn≤x≤2π​+2πn
Simplifyx=2π​+2πn
Combine the intervals−π+2πn≤x≤2πnorx=2π​+2πn
Merge Overlapping Intervalsx=2π​+2πnor−π+2πn≤x≤2πn

Popular Examples

sin(3x-pi/6)+cos(3x-pi/6)>0sin^2(x)<= 1cot(x)+(sin(x))/(cos(x)-2)>= 0(2sin(2x)+sqrt(2))*tan(x)<0cos(x)<=-(sqrt(2))/2 ,-pi<= x<= pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024