해법
5sec2(θ)sin(θ)−cos(θ)=0
해법
θ=0.19049…+2πn,θ=−2.95110…+2πn
+1
도
θ=10.91437…∘+360∘n,θ=−169.08562…∘+360∘n솔루션 단계
5sec2(θ)sin(θ)−cos(θ)=0
죄로 표현하라, 왜냐하면5(cos(θ)1)2sin(θ)−cos(θ)=0
5(cos(θ)1)2sin(θ)−cos(θ)단순화하세요:cos2(θ)5sin(θ)−cos3(θ)
5(cos(θ)1)2sin(θ)−cos(θ)
5(cos(θ)1)2sin(θ)=cos2(θ)5sin(θ)
5(cos(θ)1)2sin(θ)
(cos(θ)1)2=cos2(θ)1
(cos(θ)1)2
지수 규칙 적용: (ba)c=bcac=cos2(θ)12
규칙 적용 1a=112=1=cos2(θ)1
=5⋅cos2(θ)1sin(θ)
다중 분수: a⋅cb=ca⋅b=cos2(θ)1⋅5sin(θ)
숫자를 곱하시오: 1⋅5=5=cos2(θ)5sin(θ)
=cos2(θ)5sin(θ)−cos(θ)
요소를 분수로 변환: cos(θ)=cos2(θ)cos(θ)cos2(θ)=cos2(θ)5sin(θ)−cos2(θ)cos(θ)cos2(θ)
분모가 같기 때문에, 분수를 합친다: ca±cb=ca±b=cos2(θ)5sin(θ)−cos(θ)cos2(θ)
5sin(θ)−cos(θ)cos2(θ)=5sin(θ)−cos3(θ)
5sin(θ)−cos(θ)cos2(θ)
cos(θ)cos2(θ)=cos3(θ)
cos(θ)cos2(θ)
지수 규칙 적용: ab⋅ac=ab+ccos(θ)cos2(θ)=cos1+2(θ)=cos1+2(θ)
숫자 추가: 1+2=3=cos3(θ)
=5sin(θ)−cos3(θ)
=cos2(θ)5sin(θ)−cos3(θ)
cos2(θ)5sin(θ)−cos3(θ)=0
g(x)f(x)=0⇒f(x)=05sin(θ)−cos3(θ)=0
더하다 cos3(θ) 양쪽으로5sin(θ)=cos3(θ)
양쪽을 제곱(5sin(θ))2=(cos3(θ))2
빼다 (cos3(θ))2 양쪽에서25sin2(θ)−cos6(θ)=0
삼각성을 사용하여 다시 쓰기
−cos6(θ)+25sin2(θ)
피타고라스 정체성 사용: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−cos6(θ)+25(1−cos2(θ))
−cos6(θ)+(1−cos2(θ))⋅25=0
대체로 해결
−cos6(θ)+(1−cos2(θ))⋅25=0
하게: cos(θ)=u−u6+(1−u2)⋅25=0
−u6+(1−u2)⋅25=0:u=0.96414…,u=−0.96414…
−u6+(1−u2)⋅25=0
−u6+(1−u2)⋅25 확장 :−u6+25−25u2
−u6+(1−u2)⋅25
=−u6+25(1−u2)
25(1−u2)확대한다:25−25u2
25(1−u2)
분배 법칙 적용: a(b−c)=ab−aca=25,b=1,c=u2=25⋅1−25u2
숫자를 곱하시오: 25⋅1=25=25−25u2
=−u6+25−25u2
−u6+25−25u2=0
표준 양식으로 작성 anxn+…+a1x+a0=0−u6−25u2+25=0
다음으로 방정식 다시 쓰기 v=u2 그리고 v3=u6−v3−25v+25=0
−v3−25v+25=0해결 :v≈0.96414…
−v3−25v+25=0
다음을 위한 하나의 솔루션 찾기 −v3−25v+25=0 뉴턴-랩슨을 이용하여:v≈0.96414…
−v3−25v+25=0
뉴턴-랩슨 근사 정의
f(v)=−v3−25v+25
f′(v)찾다 :−3v2−25
dvd(−v3−25v+25)
합계/차이 규칙 적용: (f±g)′=f′±g′=−dvd(v3)−dvd(25v)+dvd(25)
dvd(v3)=3v2
dvd(v3)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=3v3−1
단순화=3v2
dvd(25v)=25
dvd(25v)
정수를 빼라: (a⋅f)′=a⋅f′=25dvdv
공통 도함수 적용: dvdv=1=25⋅1
단순화=25
dvd(25)=0
dvd(25)
상수의 도함수: dxd(a)=0=0
=−3v2−25+0
단순화=−3v2−25
렛 v0=1계산하다 vn+1 까지 Δvn+1<0.000001
v1=0.96428…:Δv1=0.03571…
f(v0)=−13−25⋅1+25=−1f′(v0)=−3⋅12−25=−28v1=0.96428…
Δv1=∣0.96428…−1∣=0.03571…Δv1=0.03571…
v2=0.96414…:Δv2=0.00013…
f(v1)=−0.96428…3−25⋅0.96428…+25=−0.00378…f′(v1)=−3⋅0.96428…2−25=−27.78954…v2=0.96414…
Δv2=∣0.96414…−0.96428…∣=0.00013…Δv2=0.00013…
v3=0.96414…:Δv3=1.927E−9
f(v2)=−0.96414…3−25⋅0.96414…+25=−5.35491E−8f′(v2)=−3⋅0.96414…2−25=−27.78875…v3=0.96414…
Δv3=∣0.96414…−0.96414…∣=1.927E−9Δv3=1.927E−9
v≈0.96414…
긴 나눗셈 적용:v−0.96414…−v3−25v+25=−v2−0.96414…v−25.92958…
−v2−0.96414…v−25.92958…≈0
다음을 위한 하나의 솔루션 찾기 −v2−0.96414…v−25.92958…=0 뉴턴-랩슨을 이용하여:솔루션 없음 v∈R
−v2−0.96414…v−25.92958…=0
뉴턴-랩슨 근사 정의
f(v)=−v2−0.96414…v−25.92958…
f′(v)찾다 :−2v−0.96414…
dvd(−v2−0.96414…v−25.92958…)
합계/차이 규칙 적용: (f±g)′=f′±g′=−dvd(v2)−dvd(0.96414…v)−dvd(25.92958…)
dvd(v2)=2v
dvd(v2)
전원 규칙을 적용합니다: dxd(xa)=a⋅xa−1=2v2−1
단순화=2v
dvd(0.96414…v)=0.96414…
dvd(0.96414…v)
정수를 빼라: (a⋅f)′=a⋅f′=0.96414…dvdv
공통 도함수 적용: dvdv=1=0.96414…⋅1
단순화=0.96414…
dvd(25.92958…)=0
dvd(25.92958…)
상수의 도함수: dxd(a)=0=0
=−2v−0.96414…−0
단순화=−2v−0.96414…
렛 v0=−5계산하다 vn+1 까지 Δvn+1<0.000001
v1=0.10287…:Δv1=5.10287…
f(v0)=−(−5)2−0.96414…(−5)−25.92958…=−46.10883…f′(v0)=−2(−5)−0.96414…=9.03585…v1=0.10287…
Δv1=∣0.10287…−(−5)∣=5.10287…Δv1=5.10287…
v2=−22.15480…:Δv2=22.25767…
f(v1)=−0.10287…2−0.96414…⋅0.10287…−25.92958…=−26.03935…f′(v1)=−2⋅0.10287…−0.96414…=−1.16990…v2=−22.15480…
Δv2=∣−22.15480…−0.10287…∣=22.25767…Δv2=22.25767…
v3=−10.72559…:Δv3=11.42920…
f(v2)=−(−22.15480…)2−0.96414…(−22.15480…)−25.92958…=−495.40430…f′(v2)=−2(−22.15480…)−0.96414…=43.34545…v3=−10.72559…
Δv3=∣−10.72559…−(−22.15480…)∣=11.42920…Δv3=11.42920…
v4=−4.34951…:Δv4=6.37607…
f(v3)=−(−10.72559…)2−0.96414…(−10.72559…)−25.92958…=−130.62684…f′(v3)=−2(−10.72559…)−0.96414…=20.48703…v4=−4.34951…
Δv4=∣−4.34951…−(−10.72559…)∣=6.37607…Δv4=6.37607…
v5=0.90644…:Δv5=5.25596…
f(v4)=−(−4.34951…)2−0.96414…(−4.34951…)−25.92958…=−40.65431…f′(v4)=−2(−4.34951…)−0.96414…=7.73488…v5=0.90644…
Δv5=∣0.90644…−(−4.34951…)∣=5.25596…Δv5=5.25596…
v6=−9.04124…:Δv6=9.94769…
f(v5)=−0.90644…2−0.96414…⋅0.90644…−25.92958…=−27.62518…f′(v5)=−2⋅0.90644…−0.96414…=−2.77704…v6=−9.04124…
Δv6=∣−9.04124…−0.90644…∣=9.94769…Δv6=9.94769…
v7=−3.26050…:Δv7=5.78073…
f(v6)=−(−9.04124…)2−0.96414…(−9.04124…)−25.92958…=−98.95656…f′(v6)=−2(−9.04124…)−0.96414…=17.11833…v7=−3.26050…
Δv7=∣−3.26050…−(−9.04124…)∣=5.78073…Δv7=5.78073…
v8=2.75310…:Δv8=6.01361…
f(v7)=−(−3.26050…)2−0.96414…(−3.26050…)−25.92958…=−33.41688…f′(v7)=−2(−3.26050…)−0.96414…=5.55687…v8=2.75310…
Δv8=∣2.75310…−(−3.26050…)∣=6.01361…Δv8=6.01361…
v9=−2.83600…:Δv9=5.58911…
f(v8)=−2.75310…2−0.96414…⋅2.75310…−25.92958…=−36.16359…f′(v8)=−2⋅2.75310…−0.96414…=−6.47036…v9=−2.83600…
Δv9=∣−2.83600…−2.75310…∣=5.58911…Δv9=5.58911…
v10=3.79931…:Δv10=6.63532…
f(v9)=−(−2.83600…)2−0.96414…(−2.83600…)−25.92958…=−31.23817…f′(v9)=−2(−2.83600…)−0.96414…=4.70786…v10=3.79931…
Δv10=∣3.79931…−(−2.83600…)∣=6.63532…Δv10=6.63532…
해결 방법을 찾을 수 없습니다
해결책은v≈0.96414…
v≈0.96414…
다시 대체 v=u2,을 해결하다 u
u2=0.96414…해결 :u=0.96414…,u=−0.96414…
u2=0.96414…
위해서 x2=f(a) 해결책은 x=f(a),−f(a)
u=0.96414…,u=−0.96414…
해결책은
u=0.96414…,u=−0.96414…
뒤로 대체 u=cos(θ)cos(θ)=0.96414…,cos(θ)=−0.96414…
cos(θ)=0.96414…,cos(θ)=−0.96414…
cos(θ)=0.96414…:θ=arccos(0.96414…)+2πn,θ=2π−arccos(0.96414…)+2πn
cos(θ)=0.96414…
트리거 역속성 적용
cos(θ)=0.96414…
일반 솔루션 cos(θ)=0.96414…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnθ=arccos(0.96414…)+2πn,θ=2π−arccos(0.96414…)+2πn
θ=arccos(0.96414…)+2πn,θ=2π−arccos(0.96414…)+2πn
cos(θ)=−0.96414…:θ=arccos(−0.96414…)+2πn,θ=−arccos(−0.96414…)+2πn
cos(θ)=−0.96414…
트리거 역속성 적용
cos(θ)=−0.96414…
일반 솔루션 cos(θ)=−0.96414…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnθ=arccos(−0.96414…)+2πn,θ=−arccos(−0.96414…)+2πn
θ=arccos(−0.96414…)+2πn,θ=−arccos(−0.96414…)+2πn
모든 솔루션 결합θ=arccos(0.96414…)+2πn,θ=2π−arccos(0.96414…)+2πn,θ=arccos(−0.96414…)+2πn,θ=−arccos(−0.96414…)+2πn
해법을 원래 방정식에 연결하여 검증
솔루션을 에 연결하여 확인합니다 5sec2(θ)sin(θ)−cos(θ)=0
방정식에 맞지 않는 것은 제거하십시오.
솔루션 확인 arccos(0.96414…)+2πn:참
arccos(0.96414…)+2πn
n=1끼우다 arccos(0.96414…)+2π1
5sec2(θ)sin(θ)−cos(θ)=0 위한 {\ quad}끼우다{\ quad} θ=arccos(0.96414…)+2π15sec2(arccos(0.96414…)+2π1)sin(arccos(0.96414…)+2π1)−cos(arccos(0.96414…)+2π1)=0
다듬다0=0
⇒참
솔루션 확인 2π−arccos(0.96414…)+2πn:거짓
2π−arccos(0.96414…)+2πn
n=1끼우다 2π−arccos(0.96414…)+2π1
5sec2(θ)sin(θ)−cos(θ)=0 위한 {\ quad}끼우다{\ quad} θ=2π−arccos(0.96414…)+2π15sec2(2π−arccos(0.96414…)+2π1)sin(2π−arccos(0.96414…)+2π1)−cos(2π−arccos(0.96414…)+2π1)=0
다듬다−1.96382…=0
⇒거짓
솔루션 확인 arccos(−0.96414…)+2πn:거짓
arccos(−0.96414…)+2πn
n=1끼우다 arccos(−0.96414…)+2π1
5sec2(θ)sin(θ)−cos(θ)=0 위한 {\ quad}끼우다{\ quad} θ=arccos(−0.96414…)+2π15sec2(arccos(−0.96414…)+2π1)sin(arccos(−0.96414…)+2π1)−cos(arccos(−0.96414…)+2π1)=0
다듬다1.96382…=0
⇒거짓
솔루션 확인 −arccos(−0.96414…)+2πn:참
−arccos(−0.96414…)+2πn
n=1끼우다 −arccos(−0.96414…)+2π1
5sec2(θ)sin(θ)−cos(θ)=0 위한 {\ quad}끼우다{\ quad} θ=−arccos(−0.96414…)+2π15sec2(−arccos(−0.96414…)+2π1)sin(−arccos(−0.96414…)+2π1)−cos(−arccos(−0.96414…)+2π1)=0
다듬다0=0
⇒참
θ=arccos(0.96414…)+2πn,θ=−arccos(−0.96414…)+2πn
해를 10진수 형식으로 표시θ=0.19049…+2πn,θ=−2.95110…+2πn