Solución
Solución
+2
Notación de intervalos
Decimal
Pasos de solución
Desplace a la izquierda
Restar de ambos lados
Periodicidad de
La periodicidad combinada de la suma de funciones periódicas es el mínimo común múltiplo de los períodos
Periodicidad de
La periodicidad de es
Periodicidad de
La periodicidad de La periodicidad de es
Simplificar
Combinar períodos:
Expresar con seno, coseno
Utilizar la identidad trigonométrica básica:
Simplificar
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Encontrar los ceros y puntos indefinidos de para
Para encontrar los ceros, transformar la desigualdad a 0
Re-escribir usando identidades trigonométricas
Utilizar la identidad trigonométrica del ángulo doble:
Aplicar las leyes de los exponentes:
Sumar:
Factorizar
Factorizar el termino común
Factorizar
Reescribir como
Aplicar las leyes de los exponentes:
Reescribir como
Aplicar las leyes de los exponentes:
Aplicar la siguiente regla para binomios al cuadrado:
Resolver cada parte por separado
Soluciones generales para
tabla de valores periódicos con intervalos:
Resolver
Soluciones para el rango
Desplace a la derecha
Restar de ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Aplicar las propiedades de las fracciones:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Soluciones generales para
tabla de valores periódicos con intervalos:
Soluciones para el rango
Desplace a la derecha
Sumar a ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Soluciones generales para
tabla de valores periódicos con intervalos:
Soluciones para el rango
Combinar toda las soluciones
Encontrar los puntos indefinidos:
Encontrar los ceros del denominador
Soluciones generales para
tabla de valores periódicos con intervalos:
Soluciones para el rango
Identificar los intervalos
Resumir en una tabla:
Identificar los intervalos que cumplen la condición:
Mezclar intervalos sobrepuestos
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
Utilizar la periodicidad de