Puedes ver tu cupón en la
página de usuario
Ir a QuillBot
Actualizar a Pro
Continuar al sitio
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluciones
Calculadora de integrales (antiderivadas)
Calculadora de derivadas
Calculadora de Álgebra
Calculadora de matrices
Más...
Gráficos
Gráfica de línea
Gráfica exponencial
Gráfica cuadrática
Gráfica de seno
Más...
Calculadoras
Calculadora de IMC
Calculadora de interés compuesto
Calculadora de porcentaje
Calculadora de aceleración
Más...
Geometría
Calculadora del teorema de pitágoras
Calculadora del área del círculo
Calculadora de triángulo isósceles
Calculadora de Triángulos
Más...
Herramientas
Cuaderno
Grupos
Hojas de referencia
Hojas de trabajo
Guías de estudio
Practica
Verificar solución
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Actualizar
×
Symbolab para Chrome
Recorta y resuelve en cualquier sitio web
Añadir a Chrome
Problemas populares
Temas
Pre-Álgebra
Álgebra
Problemas de texto
Functions & Graphing
Geometría
Trigonometría
Precálculo
Cálculo
Estadística
Problemas populares Functions & Graphing
extreme 2x^2-6x+(20)/x+30
extreme\:2x^{2}-6x+\frac{20}{x}+30
extreme f(x)=x^2-8x,-infinity <x<= 8
extreme\:f(x)=x^{2}-8x,-\infty\:<x\le\:8
extreme 5x+5sin(x),0<= x<= 2pi
extreme\:5x+5\sin(x),0\le\:x\le\:2π
extreme f(x)=106x-x^2-950
extreme\:f(x)=106x-x^{2}-950
extreme f(x)=(-3x)/(sqrt(x^2+6))
extreme\:f(x)=\frac{-3x}{\sqrt{x^{2}+6}}
extreme f(x)= 1/(x^2-4x-21)
extreme\:f(x)=\frac{1}{x^{2}-4x-21}
extreme P(x,y)=16x^2-9y^2
extreme\:P(x,y)=16x^{2}-9y^{2}
extreme f(x)=1920x-10x^3
extreme\:f(x)=1920x-10x^{3}
extreme f(x)=100e^{-0.062*x}
extreme\:f(x)=100e^{-0.062\cdot\:x}
extreme f(x)=7sin^2(x)-14cos(x)
extreme\:f(x)=7\sin^{2}(x)-14\cos(x)
extreme f(x)=-3x^2-30x-21
extreme\:f(x)=-3x^{2}-30x-21
extreme y=z-x
extreme\:y=z-x
extreme S(r,α)=rα
extreme\:S(r,α)=rα
extreme f(x,y)=5004+x^2+y^2
extreme\:f(x,y)=5004+x^{2}+y^{2}
extreme f(x)=2x^3-6x^2-210x+1,-6<= x<= 8
extreme\:f(x)=2x^{3}-6x^{2}-210x+1,-6\le\:x\le\:8
extreme f(x)=ln(x^2+3x+9)
extreme\:f(x)=\ln(x^{2}+3x+9)
extreme f(x)=4x^2+x^2=2
extreme\:f(x)=4x^{2}+x^{2}=2
extreme f(x)=((x-ln(x)))/x
extreme\:f(x)=\frac{(x-\ln(x))}{x}
extreme f(x,y)=e^{10x^2+4y^2+2}
extreme\:f(x,y)=e^{10x^{2}+4y^{2}+2}
extreme f(x)=ln(x^2+3x+8)
extreme\:f(x)=\ln(x^{2}+3x+8)
extreme f(x)=9sin(3x)
extreme\:f(x)=9\sin(3x)
extreme f(x,y)=16-8x+10y
extreme\:f(x,y)=16-8x+10y
extreme f(x)=20sin(2x)
extreme\:f(x)=20\sin(2x)
extreme x(3-x)
extreme\:x(3-x)
extreme f(x)=y*e^x+x*ln(y)
extreme\:f(x)=y\cdot\:e^{x}+x\cdot\:\ln(y)
extreme f(x)=(x^{(2/3)})(1-x^2)
extreme\:f(x)=(x^{(\frac{2}{3})})(1-x^{2})
extreme f(x,y)=(69120)/x+(69120)/y+5xy
extreme\:f(x,y)=\frac{69120}{x}+\frac{69120}{y}+5xy
extreme f(x)=4x^2-8x+7y^2+8
extreme\:f(x)=4x^{2}-8x+7y^{2}+8
extreme (2x-5)/(3\sqrt[3]{x)}+x^{2/3}
extreme\:\frac{2x-5}{3\sqrt[3]{x}}+x^{\frac{2}{3}}
extreme f(x)=2(csc(x)+sec(x))
extreme\:f(x)=2(\csc(x)+\sec(x))
extreme f(x,y)=xe^y-ln(x)
extreme\:f(x,y)=xe^{y}-\ln(x)
extreme y= 5/x
extreme\:y=\frac{5}{x}
extreme f(x)=x^4-x^2+2
extreme\:f(x)=x^{4}-x^{2}+2
extreme f(x)=(x^2-16)/(x-5)
extreme\:f(x)=\frac{x^{2}-16}{x-5}
extreme 15sin(5000pit)
extreme\:15\sin(5000πt)
extreme x^4+2x^2+y^4-2y^2+3
extreme\:x^{4}+2x^{2}+y^{4}-2y^{2}+3
extreme f(x)=9*x^3-7*x^2+3*x+10
extreme\:f(x)=9\cdot\:x^{3}-7\cdot\:x^{2}+3\cdot\:x+10
extreme f(x)=x^2-6,-2<= x<= 4
extreme\:f(x)=x^{2}-6,-2\le\:x\le\:4
extreme f(x,y)=e^{-2x^2-4y^2}
extreme\:f(x,y)=e^{-2x^{2}-4y^{2}}
extreme 6x^2-48x-190
extreme\:6x^{2}-48x-190
extreme f(x)=(e^x)/((4+e^x))
extreme\:f(x)=\frac{e^{x}}{(4+e^{x})}
extreme f(x)=4x^3-2x^2-5
extreme\:f(x)=4x^{3}-2x^{2}-5
extreme T(x,y)=ln(3xy+2x^2-y)
extreme\:T(x,y)=\ln(3xy+2x^{2}-y)
extreme f(x)=5000-15x+0.08x^2
extreme\:f(x)=5000-15x+0.08x^{2}
extreme 2y^2+2xy+x^2-16x-20y
extreme\:2y^{2}+2xy+x^{2}-16x-20y
extreme f(x)=-2x^2+200x
extreme\:f(x)=-2x^{2}+200x
extreme y=x^2-5x-14
extreme\:y=x^{2}-5x-14
extreme sqrt(x)*7-x
extreme\:\sqrt{x}\cdot\:7-x
extreme f(x)=-5x^2-8y^2-2xy+102y
extreme\:f(x)=-5x^{2}-8y^{2}-2xy+102y
extreme f(x)=x^{2/3},-1<= x<= 8
extreme\:f(x)=x^{\frac{2}{3}},-1\le\:x\le\:8
extreme 2x^3-3x^2-72x+1
extreme\:2x^{3}-3x^{2}-72x+1
extreme f(x)=\sqrt[3]{x(x^2-1)}
extreme\:f(x)=\sqrt[3]{x(x^{2}-1)}
extreme f(x)=(x^5)/5-ln(x)
extreme\:f(x)=\frac{x^{5}}{5}-\ln(x)
extreme f(x,y)=8x^4-x^2+3y^2
extreme\:f(x,y)=8x^{4}-x^{2}+3y^{2}
extreme f(x,y)=3x^2+y^3-18xy+22
extreme\:f(x,y)=3x^{2}+y^{3}-18xy+22
extreme f(3.2)=-(40000t)/((3+t^2+2x^2)^2)
extreme\:f(3.2)=-\frac{40000t}{(3+t^{2}+2x^{2})^{2}}
extreme (4e^{-2x})/(2x+5)
extreme\:\frac{4e^{-2x}}{2x+5}
extreme f(x,y)=-2x^2-y^3+9y^2+16x-15y+5
extreme\:f(x,y)=-2x^{2}-y^{3}+9y^{2}+16x-15y+5
extreme f(x)=2x^2+(91.2)/x
extreme\:f(x)=2x^{2}+\frac{91.2}{x}
extreme P(a)=y^2-4r^2+r+e^2
extreme\:P(a)=y^{2}-4r^{2}+r+e^{2}
extreme f(t)=25cos(2t)
extreme\:f(t)=25\cos(2t)
extreme f(x)=-2x^3+24x^2-42x+7
extreme\:f(x)=-2x^{3}+24x^{2}-42x+7
extreme f(x)=-0.01x^2+120x+200000
extreme\:f(x)=-0.01x^{2}+120x+200000
extreme f(xy)=-x^2-2y^2+xy+x+3y
extreme\:f(xy)=-x^{2}-2y^{2}+xy+x+3y
extreme x/(ln(x^2))
extreme\:\frac{x}{\ln(x^{2})}
extreme x^{2x}
extreme\:x^{2x}
extreme f(x)=4xy^2+2xy-3y
extreme\:f(x)=4xy^{2}+2xy-3y
extreme f(x,y)=(500)/((4+x^2+y^2))
extreme\:f(x,y)=\frac{500}{(4+x^{2}+y^{2})}
extreme f(x)=(5+x)/(4-x)
extreme\:f(x)=\frac{5+x}{4-x}
extreme f(x)=7x^2+x-3
extreme\:f(x)=7x^{2}+x-3
extreme y=5x+(180)/x
extreme\:y=5x+\frac{180}{x}
extreme (-8x^3+5x^2-1)/(2x^2-9x)
extreme\:\frac{-8x^{3}+5x^{2}-1}{2x^{2}-9x}
extreme f(x)=x-6sqrt(x+9)
extreme\:f(x)=x-6\sqrt{x+9}
extreme f(x)= x/(4x-x^3)
extreme\:f(x)=\frac{x}{4x-x^{3}}
extreme x^2-10x-9,2<= x<= 7
extreme\:x^{2}-10x-9,2\le\:x\le\:7
extreme 0.002x^2+4.4x-90
extreme\:0.002x^{2}+4.4x-90
extreme f(x)=7-4x^2
extreme\:f(x)=7-4x^{2}
extreme f(x,y)=((1x+3y))/(1+x^2+y^2)
extreme\:f(x,y)=\frac{(1x+3y)}{1+x^{2}+y^{2}}
extreme sqrt(x^2+y^2-2x+26)
extreme\:\sqrt{x^{2}+y^{2}-2x+26}
extreme f(x)=-1.25x^2+160x-2500
extreme\:f(x)=-1.25x^{2}+160x-2500
extreme f(x)=2x^3-150x+3
extreme\:f(x)=2x^{3}-150x+3
extreme f(x,y)=x^2+1/2 y^2+1/2 (y-x)-3/2
extreme\:f(x,y)=x^{2}+\frac{1}{2}y^{2}+\frac{1}{2}(y-x)-\frac{3}{2}
extreme x^4+3x^3+2x^2+x+1
extreme\:x^{4}+3x^{3}+2x^{2}+x+1
extreme f(x)=-0.4x^2+90x-2000,0<= x
extreme\:f(x)=-0.4x^{2}+90x-2000,0\le\:x
extreme 2x^2-2x
extreme\:2x^{2}-2x
extreme f(x)=(x-2)^{1/8}
extreme\:f(x)=(x-2)^{\frac{1}{8}}
extreme y=2cos(x)-11x+7[-pi,0]
extreme\:y=2\cos(x)-11x+7[-π,0]
extreme y=(x^2-4)^4(x^2+1)^5
extreme\:y=(x^{2}-4)^{4}(x^{2}+1)^{5}
extreme f(x)=((x^2-2x+1))/(x+1)
extreme\:f(x)=\frac{(x^{2}-2x+1)}{x+1}
extreme f(x)=-x^3+6x^2-9x-1
extreme\:f(x)=-x^{3}+6x^{2}-9x-1
extreme f(x)=(-1/100 (x)(x-300))
extreme\:f(x)=(-\frac{1}{100}(x)(x-300))
extreme f(x)=2x+6,-4<= x<= 2
extreme\:f(x)=2x+6,-4\le\:x\le\:2
extreme f(x)=(x-9)^3
extreme\:f(x)=(x-9)^{3}
extreme f(x)=1-x^{4/5}
extreme\:f(x)=1-x^{\frac{4}{5}}
extreme f(x)=4+5x+x^2
extreme\:f(x)=4+5x+x^{2}
extreme-2x+3ln(4x),1<= x<= 5
extreme\:-2x+3\ln(4x),1\le\:x\le\:5
extreme f(x)=((-x^6-5x^3+5x))/((x^2+2))
extreme\:f(x)=\frac{(-x^{6}-5x^{3}+5x)}{(x^{2}+2)}
extreme f(x,y)=x^2+xy+y^2-9x+1
extreme\:f(x,y)=x^{2}+xy+y^{2}-9x+1
extreme (4s)/(s^2-16)
extreme\:\frac{4s}{s^{2}-16}
extreme f(x,y)=sqrt(107-4x^2-3y^2)
extreme\:f(x,y)=\sqrt{107-4x^{2}-3y^{2}}
1
..
829
830
831
832
833
..
839