Puedes ver tu cupón en la
página de usuario
Ir a QuillBot
Actualizar a Pro
Continuar al sitio
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Soluciones
Calculadora de integrales (antiderivadas)
Calculadora de derivadas
Calculadora de Álgebra
Calculadora de matrices
Más...
Gráficos
Gráfica de línea
Gráfica exponencial
Gráfica cuadrática
Gráfica de seno
Más...
Calculadoras
Calculadora de IMC
Calculadora de interés compuesto
Calculadora de porcentaje
Calculadora de aceleración
Más...
Geometría
Calculadora del teorema de pitágoras
Calculadora del área del círculo
Calculadora de triángulo isósceles
Calculadora de Triángulos
Más...
Herramientas
Cuaderno
Grupos
Hojas de referencia
Hojas de trabajo
Guías de estudio
Practica
Verificar solución
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Actualizar
×
Symbolab para Chrome
Recorta y resuelve en cualquier sitio web
Añadir a Chrome
Problemas populares
Temas
Pre-Álgebra
Álgebra
Problemas de texto
Functions & Graphing
Geometría
Trigonometría
Precálculo
Cálculo
Estadística
Problemas populares Trigonometría
0<= y<= sin(3.1416)
0\le\:y\le\:\sin(3.1416)
-1<= 2/(cos(x))<= 1
-1\le\:\frac{2}{\cos(x)}\le\:1
0<= sin(x)<1
0\le\:\sin(x)<1
-1<sec(x)<1
-1<\sec(x)<1
-1<tan(x/2)<-1/5
-1<\tan(\frac{x}{2})<-\frac{1}{5}
1<= sin(θ)<3
1\le\:\sin(θ)<3
cos(θ)>0\land sin(θ)<0
\cos(θ)>0\land\:\sin(θ)<0
tan(θ)=1\land cos(θ)>0,csc(θ)
\tan(θ)=1\land\:\cos(θ)>0,\csc(θ)
-1<sin(x)<= 0
-1<\sin(x)\le\:0
tan(θ)= 1/3 \land sin(θ)<0
\tan(θ)=\frac{1}{3}\land\:\sin(θ)<0
cot(θ)=2\land sec(θ)>= 0
\cot(θ)=2\land\:\sec(θ)\ge\:0
sin(θ)=-(sqrt(3))/2 \land cos(θ)>= 0
\sin(θ)=-\frac{\sqrt{3}}{2}\land\:\cos(θ)\ge\:0
-1<= (pi(cos(x)-sin(x)))/(4sqrt(2))<= 1
-1\le\:\frac{π(\cos(x)-\sin(x))}{4\sqrt{2}}\le\:1
0<= cos(θ)<= 1
0\le\:\cos(θ)\le\:1
-2sin^2(x)0<x<360
-2\sin^{2}(x)0<x<360
-1<= tan(x/2-pi/3)<= sqrt(3)
-1\le\:\tan(\frac{x}{2}-\frac{π}{3})\le\:\sqrt{3}
-1>=-cos(2x)>= 1
-1\ge\:-\cos(2x)\ge\:1
0<82.5-67.5cos(pi/6 t)<20
0<82.5-67.5\cos(\frac{π}{6}t)<20
cos(x^2)0<x<sqrt(x)
\cos(x^{2})0<x<\sqrt{x}
sin(x)=-4/5 \land cos(x)<0,sin(2x)
\sin(x)=-\frac{4}{5}\land\:\cos(x)<0,\sin(2x)
cosh(θ)= 26/7 \land θ<0,sinh(θ)
\cosh(θ)=\frac{26}{7}\land\:θ<0,\sinh(θ)
-pi/2 <arcsin(x)< pi/2
-\frac{π}{2}<\arcsin(x)<\frac{π}{2}
(11pi)/9 <= arctan(θ)<= (13pi)/9
\frac{11π}{9}\le\:\arctan(θ)\le\:\frac{13π}{9}
sin(x)=-(sqrt(3))/5 \land cos(x)>0
\sin(x)=-\frac{\sqrt{3}}{5}\land\:\cos(x)>0
sin(x)0<= x<= pi
\sin(x)0\le\:x\le\:π
x=-4\land csc(x)>0
x=-4\land\:\csc(x)>0
cos(θ)<0\land (cos(θ))(sin(θ))<0
\cos(θ)<0\land\:(\cos(θ))(\sin(θ))<0
cosh(θ)= 15/4 \land θ<0,sinh(θ)
\cosh(θ)=\frac{15}{4}\land\:θ<0,\sinh(θ)
2pi>sqrt(3)tan(θ)+1>= 0
2π>\sqrt{3}\tan(θ)+1\ge\:0
sin(3x)0<= x<= 2pi
\sin(3x)0\le\:x\le\:2π
tan(θ)=-32\land csc(θ)>0
\tan(θ)=-32\land\:\csc(θ)>0
sin(θ)<0\land tan(θ)>0
\sin(θ)<0\land\:\tan(θ)>0
-1<sin^2(x)<1
-1<\sin^{2}(x)<1
sin(θ)=(sqrt(3))/2 \land tan(θ)>0
\sin(θ)=\frac{\sqrt{3}}{2}\land\:\tan(θ)>0
sin(θ)=-6/9 \land tan(θ)>0
\sin(θ)=-\frac{6}{9}\land\:\tan(θ)>0
cos(θ)= 5/7 \land cot(θ)<0,sin(θ)
\cos(θ)=\frac{5}{7}\land\:\cot(θ)<0,\sin(θ)
sec(θ)<0\land (cos(θ))(sin(θ))<0
\sec(θ)<0\land\:(\cos(θ))(\sin(θ))<0
0<= a+barctan(x)<= 1
0\le\:a+b\arctan(x)\le\:1
cos(x)<sin(x)<1
\cos(x)<\sin(x)<1
sin(a-pi/2)*csc(2pi+a)90<= a<= 180
\sin(a-\frac{π}{2})\cdot\:\csc(2π+a)90^{\circ\:}\le\:a\le\:180^{\circ\:}
arcsec(-sqrt(2))0<= x<= 2pi
\arcsec(-\sqrt{2})0\le\:x\le\:2π
-1<sin(pix)<1
-1<\sin(πx)<1
cos(θ)=25\land tan(θ)<0
\cos(θ)=25\land\:\tan(θ)<0
cos(x)>0\land tan(x)>0
\cos(x)>0\land\:\tan(x)>0
tan(θ)<0\land sec(θ)>0
\tan(θ)<0\land\:\sec(θ)>0
sin(θ)= 9/41 \land cos(θ)>0
\sin(θ)=\frac{9}{41}\land\:\cos(θ)>0
derivada de arcsech(cos(5x)0)<x< pi/5
\frac{d}{dx}(\arcsech(\cos(5x))0)<x<\frac{π}{5}
tan(θ)>0\land cos(θ)<0
\tan(θ)>0\land\:\cos(θ)<0
(11pi)/2 <= arctan(θ)<= (13pi)/9
\frac{11π}{2}\le\:\arctan(θ)\le\:\frac{13π}{9}
0<= tan^2(x)<= 3
0\le\:\tan^{2}(x)\le\:3
tan(θ)=2\land cos(θ)<0
\tan(θ)=2\land\:\cos(θ)<0
tan(θ)=-4/3 \land sin(θ)<0,sec(θ)
\tan(θ)=-\frac{4}{3}\land\:\sin(θ)<0,\sec(θ)
tan(x)0<= x<= pi/6
\tan(x)0\le\:x\le\:\frac{π}{6}
cot(t)<0\land sec(t)>0
\cot(t)<0\land\:\sec(t)>0
4cos(θ)4sin(θ)0<= θ<= pi/2
4\cos(θ)4\sin(θ)0\le\:θ\le\:\frac{π}{2}
-1/2 <= sin(x)<= (sqrt(3))/2
-\frac{1}{2}\le\:\sin(x)\le\:\frac{\sqrt{3}}{2}
sec(θ)= 13/5 \land sin(θ)<0
\sec(θ)=\frac{13}{5}\land\:\sin(θ)<0
cot(θ)= 2/3 \land csc(θ)<0
\cot(θ)=\frac{2}{3}\land\:\csc(θ)<0
-(sqrt(3))/2 <cos(x)<(sqrt(3))/2
-\frac{\sqrt{3}}{2}<\cos(x)<\frac{\sqrt{3}}{2}
0<=-cos(b)0.6428<= 180
0\le\:-\cos(b)0.6428\le\:180
-sqrt(3)<tan(θ)<1
-\sqrt{3}<\tan(θ)<1
-1/2 <cos(x)<= 1/2
-\frac{1}{2}<\cos(x)\le\:\frac{1}{2}
1/3 cosh(3x)0<= x<= ln(6^{(1/3)})
\frac{1}{3}\cosh(3x)0\le\:x\le\:\ln(6^{(\frac{1}{3})})
sin(θ)=-(sqrt(5))/9 \land cos(θ)>0
\sin(θ)=-\frac{\sqrt{5}}{9}\land\:\cos(θ)>0
-1<sin(x/6)<1
-1<\sin(\frac{x}{6})<1
-sqrt(3)<tan(x)<1
-\sqrt{3}<\tan(x)<1
sqrt((5tan^2(θ)+25))0<θ< pi/2
\sqrt{(5\tan^{2}(θ)+25)}0<θ<\frac{π}{2}
sin(x)<cos(x)<tan(x)
\sin(x)<\cos(x)<\tan(x)
sin(x)0<= x<= 2pi
\sin(x)0\le\:x\le\:2π
-pi/2 <sin(x)< pi/2
-\frac{π}{2}<\sin(x)<\frac{π}{2}
sin(2x)>= 0\land cos(x)>0
\sin(2x)\ge\:0\land\:\cos(x)>0
cos(x)= 5/13 \land sin(x)<0,tan(2x)
\cos(x)=\frac{5}{13}\land\:\sin(x)<0,\tan(2x)
sin(θ)sec(θ)>0\land sin(θ)<4
\sin(θ)\sec(θ)>0\land\:\sin(θ)<4
csc(x)=(-sqrt(13))/2 \land tan(x)>0
\csc(x)=\frac{-\sqrt{13}}{2}\land\:\tan(x)>0
-2<= 2cos(3x+5)<= 2
-2\le\:2\cos(3x+5)\le\:2
arccos(-0.83)180<θ<270
\arccos(-0.83)180<θ<270
-1/2 <sin(x)<1
-\frac{1}{2}<\sin(x)<1
0<= x<= 2piarccos(1/2)
0\le\:x\le\:2π\arccos(\frac{1}{2})
24sin(θ)>0.06>24cos(θ)
24\sin(θ)>0.06>24\cos(θ)
cos(x)<= sin(x)<= (sqrt(3))/2
\cos(x)\le\:\sin(x)\le\:\frac{\sqrt{3}}{2}
0<= θ<360sin(71)
0\le\:θ<360\sin(71^{\circ\:})
1<= tan(x)<= 3^{1/2}
1\le\:\tan(x)\le\:3^{\frac{1}{2}}
-1<(cos(x))/7 <1
-1<\frac{\cos(x)}{7}<1
sec(θ)=(sqrt(5))/2 \land sin(θ)<= 0
\sec(θ)=\frac{\sqrt{5}}{2}\land\:\sin(θ)\le\:0
tan(θ)<0\land sin(θ)>0
\tan(θ)<0\land\:\sin(θ)>0
sin(θ)<0\land sec(θ)<0
\sin(θ)<0\land\:\sec(θ)<0
0<= 1-cos(θ)<= 0.8
0\le\:1-\cos(θ)\le\:0.8
-1<2cos(x)<1
-1<2\cos(x)<1
3sin(x)0<= x<= 180
3\sin(x)0^{\circ\:}\le\:x\le\:180^{\circ\:}
sin(x)<= sin^2(x)<= (sqrt(3))/2 sin(x)
\sin(x)\le\:\sin^{2}(x)\le\:\frac{\sqrt{3}}{2}\sin(x)
-1<= cos(x-pi/4)<= 1
-1\le\:\cos(x-\frac{π}{4})\le\:1
sin(θ)=13\land 0<θ<pi^2,2θ
\sin(θ)=13\land\:0<θ<π^{2},2θ
sin(7)(x)<sin(2)(x)+cos(7)(x)<cos(2)(x)
\sin(7)(x)<\sin(2)(x)+\cos(7)(x)<\cos(2)(x)
0<sin(x)<1
0<\sin(x)<1
tan(θ)=-5/2 \land cos(θ)<0
\tan(θ)=-\frac{5}{2}\land\:\cos(θ)<0
sec(x)=sqrt(5)\land sin(x)>0,tan(2x)
\sec(x)=\sqrt{5}\land\:\sin(x)>0,\tan(2x)
-1<= cos(x)<-1/2
-1\le\:\cos(x)<-\frac{1}{2}
cos(θ)= 2/3 \land sin(θ)<0
\cos(θ)=\frac{2}{3}\land\:\sin(θ)<0
sec(360)<= θ<= 360
\sec^{\circ\:}(360^{\circ\:})\le\:θ\le\:360
-1<(0.2)/(4*cos^2(x)-3)<0
-1<\frac{0.2}{4\cdot\:\cos^{2}(x)-3}<0
1
..
229
230
231
232
233
..
345